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Poisson–Boltzmann (PB) model is one of the most popular

implicit solvent models in biophysical modeling and computa-

tion. The ability of providing accurate and reliable PB estima-

tion of electrostatic solvation free energy, DGel, and binding

free energy, DDGel, is important to computational biophysics

and biochemistry. In this work, we investigate the grid depen-

dence of our PB solver (MIBPB) with solvent excluded surfaces

for estimating both electrostatic solvation free energies and

electrostatic binding free energies. It is found that the relative

absolute error of DGel obtained at the grid spacing of 1.0 Å

compared to DGel at 0.2 Å averaged over 153 molecules is less

than 0.2%. Our results indicate that the use of grid spacing

0.6 Å ensures accuracy and reliability in DDGel calculation. In

fact, the grid spacing of 1.1 Å appears to deliver adequate

accuracy for high throughput screening. VC 2017 Wiley Periodi-

cals, Inc.

DOI: 10.1002/jcc.24757

Introduction

Electrostatics is ubiquitous in biomolecular and cellular sys-

tems and of paramount importance to biological processes.

Accurate and reliable prediction of electrostatic binding free

energy, DDGel, is crucial to biophysical modeling and computa-

tion. The prediction of DDGel plays a vital role in the study of

many cellular processes, such as signal transduction, gene

expression, and protein synthesis. Additionally, many pharma-

ceutical applications, especially in the final stage of the drug

design, rely on the accurate and reliable calculation of binding

free energy. Technically, the accuracy and reliability of electro-

static binding energy prediction depend essentially on the

quality of electrostatic solvation (DGel) estimation, which can

be achieved by solving the Poisson–Boltzmann (PB) equation

in the implicit solvent model.[1–5] In past decades, the develop-

ment of a robust PB solver catches much attention in compu-

tational biophysics and biochemistry. Mathematically, most PB

solvers reported in the literature are based on three major

approaches, namely, the finite difference method (FDM),[6] the

finite element method,[7,8] and the boundary element method

(BEM).[9,10] Among them, the FDM is prevalently used in the

field due to its simplicity in implementation. The emblematic

solvers in this category are Amber PBSA,[11,12] Delphi,[13,14]

APBS,[15] and CHARMM PBEQ.[6]

In the past few years, there have been many attempts to

develop highly accurate PB solvers using advance techniques

for interface treatments.[16,17] However, no confirmation for the

reliable use of grid spacing of 0.5 Å in DDGel has been given.

In this work, we investigate the grid dependence of our PB

solver (MIBPB)[4,18] in estimating both electrostatic solvation

free energies and electrostatic binding free energies. The

MIBPB solver is by far the only existing method that is second-

order accurate in L1 norm for solving the PB equation with

discontinuous dielectric constants, singular charge sources,

and geometric singularities from the solvent excluded surfaces

(SESs) of biomolecules.[18] Here, the L1 norm means the maxi-

mum absolute error measure and “second order accurate”

means that the error reduces four times when the grid spacing

is halved. Our results indicate that the use of grid spacing 0.6

Å ensures accuracy and reliability in DDGel calculation. In fact,

a grid spacing of 1.1 Å appears to deliver adequate accuracy

for high throughput screening. We, therefore, believe that

when it is used properly, the PB methodology is able to deliver

accurate and reliable electrostatic binding analysis.

Theory and Methods

The PB model

The PB model is a multiscale model. In this model, the solvent

is treated as a dielectric continuum while the solute molecule

is described at the atomistic detail.[1,4] Denote Xm and Xs,

respectively, as the solute and solvent domains. The computa-

tional domain X 2 R3 is, then, formed by X5Xm [ C [ Xs,

where C is the molecular surface. If the ion-exclusive layer is

ignored, one can formulate the PB equation as follows
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where /ðrÞ is the electrostatic potential and qi is the partial

charge of the ith atom at position ri . In addition, constants

kB; T ; ec, and Nm are, respectively, the Boltzmann constant, the

absolute temperature, the electronic charge, and the number

of charges in the biomolecule. The dielectric coefficient EðrÞ
and the ionic strength jðrÞ are defined as

EðrÞ5
Em; r 2 Xm;

Es; r 2 Xs;

(
(2)

and

jðrÞ5
0; r 2 Xm;

�j; r 2 Xs;

(
(3)

where �j is the Debye–Huckel parameter.

The far-filed boundary condition /ð1Þ50 is used for PB eq.

(1). However, for a practical computation, the following

Debye–Huckel boundary condition is carried out

/ðrÞ5
XNm

i51

qi

Esjr2rij
e2�jjr2ri j (4)

Moreover, the interface conditions across the solvent-solute

interface C are imposed as

/ðrÞ½ �50; r 2 C; (5)

EðrÞr/ðrÞÞ½ � � n50; r 2 C; (6)

where ½�� denotes the difference of the quantity � cross the

interface, and n is the normal vector pointing out from solute

region to solvent region.

The electrostatic solvation free energy in the PB model can

be expressed as

DGel5
1

2

XNm

i51

qi UðriÞ2U0ðriÞð Þ; (7)

where U0 is the solution of the PB equation without consider-

ing the solvent-solute interface.

MIBPB package

In the current work, we use the our MIBPB package[4,18] to pre-

dict the electrostatic solvation free energy. The MIBPB package

is a second-order convergence PB solver for dealing with the

SESs of biomolecules. Numerically, there are three major

obstacles in constructing accurate and reliable PB solvers. First,

commonly used solvent-solute interfaces, that is, the van der

Walls surface, solvent accessible surface, and the SES[19,20]

admit geometric singularities, such as sharp tips, cusps and

self-intersecting surfaces,[21] which make the rigorous

enforcement of interface jump conditions a formidable task in

PB solvers. An advanced mathematical interface techniques,

the matched interface and boundary (MIB) method,[22–27] is

used in the MIBPB package to achieve the second order accu-

racy in handling biomolecular SESs. Specifically, the MIB meth-

od uses the Cartesian grid for the finite difference (FD)

schemes. However, in the vicinity of the interface, the regular

FD algorithm will fail to achieve its designed accuracy. To over-

come this hindrance, the jump conditions (5) and (6) are rigor-

ously enforced in the MIB algorithm to restore the designed

order of convergence. To this end, we classify the grid points

(or nodes) into two categories, regular ones and irregular

ones. A node is irregular when its FD expression involves

node(s) on the other side of the interface. The MIB method

replaces the value of an irregular point by a linear combina-

tion of regular ones and jump conditions, and refers it as a fic-

titious value. As a result, the designed accuracy can be

restored under that treatment.[22–27] Additionally, the atomic

singular charges described by the Dirac delta functions give

rise to another difficulty in constructing highly accurate PB

solver. A Dirichlet-to-Neumann map technique has been devel-

oped in the MIBPB package to avoid the direct numerical

approximation of singular charges using the analytical Green’s

functions.[28] Finally, the nonlinear Boltzmann term can affect

solver efficiency when handled inappropriately, particularly for

BEMs. A quasi-Newton algorithm is implemented in the MIBPB

package[4,18] to take care the nonlinear term.[4,18] The second

order convergence in L1 norm of the MIBPB solver for the

electrostatic potential and electrostatic solvation free energy

of realistic protein SESs was confirmed in our earlier

work.[26,28] Interested readers can access this package via our

online server at http://weilab.math.msu.edu/MIBPB/.

Interface generation

Many studies suggest that SES is able to deliver the state of

the art accurate modeling of the solvated molecule.[7,10,14] As

a result, much effort has been paid to developing an accurate

and robust SES software.[21,29] However, the MSMS software[21]

generates a Lagrangian representation of the SES and is incon-

venient for the Cartesian domain implementation of PB solv-

ers. A Lagrangian to Eulerian transformation is required to

convert MSMS surfaces for our Cartesian-based MIBPB solver.[4]

Most recently, we have developed a new SES software, Euler-

ian solvent excluded surface (ESES), to directly generate the

SESs in the Eulerian representation.[30] Our ESES software ena-

bles the MIBPB solver to produce a reliable DGel. Both MSMS

and ESES are supported by our MIBPB software. By increasing

the MSMS surface density, the electrostatic solvation free ener-

gies calculated using MSMS converge to those obtained using

ESES.[30] Therefore, only results using ESES are shown in this

work. Our ESES online server is available at http://weilab.math.

msu.edu/ESES/.

Datasets

In the present work, we use three sets of biomolecular com-

plexes for solvation free energy and binding free energy
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estimations. Specifically, the first set, Dataset 1, is a collection

of DNA-minor groove drug complexes having a narrow range

of DDG. The Protein Data Bank (PDB) IDs (PDBIDs) for this set

are as follows: 102d, 109d, 121d, 127d, 129d, 166d, 195d, 1d30,

1d63, 1d64, 1d86, 1dne, 1eel, 1fmq, 1fms, 1jtl, 1lex, 1prp, 227d,

261d, 164d, 289d, 298d, 2dbe, 302d, 311d, 328d, and 360d.

The second set, Dataset 2, includes various wild-type and

mutant barnase-barstar complexes. Its PDBIDs are as follows:

1b27, 1b2s, 1b2u, 1b3s, 2az4, 1x1w, 1x1y, 1x1u, and 1x1x. In

the last set, Dataset 3, we investigate RNA-peptide complexes

with following PDBIDs: 1a1t, 1a4t, 1biv, 1exy, 1g70, 1hji, 1i9f,

1mnb, 1nyb, 1qfq, 1ull, 1zbn, 2a9x, and 484d. The datasets can

be downloaded from website http://www.sb.fsu.edu/m~fenley/

convergence/downloads/convergence_pqr_sets.tar.gz. They are

also available from our website http://users.math.msu.edu/

users/wei/Data/bindingdata.tar.gz.

PB calculation details

The electrostatics binding free energy is a measure of binding

affinity of two compounds due to the electrostatics interac-

tion. Based on the free energy cycle, the electrostatics binding

free energy can be calculated by the following formula

DDGel5 DGelð ÞAB2 DGelð ÞA2 DGelð ÞB1 DDGelð ÞCoulomb; (8)

where ðDGelÞAB is the electrostatic solvation free energy of the

bounded complex AB, ðDGelÞA and ðDGelÞB are the electrostatic

solvation free energies of the unbounded components A and

B, and ðDDGelÞCoulomb is the electrostatic binding free energy

of the two components in vacuum.

The electrostatic solvation free energies DGel are obtained

using MIBPB software[4,18] while the binding energy

ðDDGelÞCoulomb is easily evaluated analytically via the following

formula

DDGelð ÞCoulomb5
X

i;j

qiqj

Emrij
; 8i 2 A; j 2 B; (9)

where qi and qj are the corresponding charges of the given

pair of atoms, and rij is the distance between this pair. Here,

Em is the dielectric constant of the solute region. Table S3 (in

the Supporting Information) lists ðDDGelÞCoulomb values of 51

studied complexes.

In all our calculations, the absolute temperature of the ionic

solvent is chosen to be T5298 K, the dielectric constants for

solute and solvent are 1 and 80, and the ionic strength is

0.1 M NaCl. The PBE is solved by the linearized solver, but the

nonlinear one does not produce any notably differences. The

incomplete LU biconjugate gradient squared (ILUBGS) solver is

used to solve all linear systems risen by the MIBPB approach.

To maintain consistent computations of the PB solver at differ-

ent grid sizes, the criteria convergence of ILUBGS solver mea-

sured by L2-norm is set to be 1026, and the maximum

iteration number is set to 100,000. The predictions of MIBPB

solver on DGel and DDGel are confirmed by other solvers such

as PBSA,[11,12] Delphi,[13,14] and APBS[15] at the grid size of

0.2 Å, see Table S2 of Supporting Information.

Results and Discussion

As described above, we consider three sets of binding com-

plexes, namely, drug-DNA, barnase-barstar and RNA-peptide

systems. For the sake of illustration, three sample surface elec-

trostatic potentials, each from one distinct set, are depicted in

Figure 1. PDBIDs for these three complexes are respectively

121d (in Drug-DNA complexes), 1b3s (in barnase-barstar com-

plexes), and 1biv (in RNA-peptide complexes). In the rest of

this section, we explore the influence of grid spacing in PB

equation solvation and binding free energy estimations using

our MIBPB solver.

Figure 1. Illustration of surface electrostatic potentials (in units of kcal/mol/e) for three complexes, generated by Chimera software.[31] a) PDBID: 121d (in

Drug-DNA complexes); b) PDBID: 1b3s (in barnase-barstar complexes); c) PDBID: 1biv (in RNA-peptide complexes). [Color figure can be viewed at wileyonli-

nelibrary.com]
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The influence of grid spacing in DGel estimation

We first examine the accuracy and robustness of our MIBPB

solver in predicting the electrostatic solvation free energies of

the aforementioned three datasets. Some previous litera-

ture[32,33] has recognized that a grid size of h50:5 Å is small

enough to produce a reliable DGel. Such an observation cer-

tainly remains for the MIBPB solver. In fact, our PB solver is able

to deliver a very well-convergent calculations of electrostatic sol-

vation free energies at as coarse grid sizes as 1.0 and 1.1 Å.

In the current calculations, the finest grid size is chosen to

be 0.2 Å, and the coarser grid sizes are between 0.3 and 1.1 Å.

Figure 2 depicts the correlations of DGel at various meshes for

all complexes and unbounded components of three datasets.

The electrostatic solvation free energies obtained at the finest

grid spacing of 0.2 Å are plotted against those computed from

coarser grid spacings of 0.3, 0.7, and 1.1 Å. Obviously, the best

fitting lines for these data at various coarse grid spacings pro-

duce nearly perfect alignments between the finest mesh

results and those from coarse meshes. As shown in Table 1, R2

and slope values at the pair of grid sizes (0.2 Å, 1.1 Å) for

DNA-drug, barnase-barstar and RNA-peptide are, respectively,

ð1:0000; 1:0004Þ; ð0:9997; 0:9972Þ, and ð1:0000; 1:0005Þ. These

results indicate the accuracy and robustness in the MIBPB pre-

diction of electrostatic solvation free energies (DGel). Table S1,

in the Supporting Information, reports the values DGel for all

Figure 2. Electrostatic solvation free energy, for all complexes and unbounded components of three datasets, with different grid sizes plotted against the

one computed with a finest grid size of h50:2 Å. a) DNA-drug with pair (0.2 Å, 0.3 Å); b) DNA-drug with pair (0.2 Å, 0.7 Å); c) DNA-drug with pair (0.2 Å,

1.1 Å); d) Barnase-barstar with pair (0.2 Å, 0.3 Å); e) Barnase-barstar with pair (0.2 Å, 0.7 Å); f ) Barnase-Barstar with pair (0.2 Å, 1.1 Å); g) RNA-peptide with

pair (0.2 Å, 0.3 Å); h) RNA-peptide with pair (0.2 Å, 0.7 Å); i) RNA-peptide with pair (0.2 Å, 1.1 Å). [Color figure can be viewed at wileyonlinelibrary.com]
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the 51 complexes and associated 102 components studied in

this work. Finally, we examine the performance of our solver

by considering the relative absolute error, the difference

between results obtained with coarser and the finest grid

spacings, defined as follows

Relative absolute error¼:
����DGel;h2DGel;h50:2

DGel;h50:2

����: (10)

Figure 3 illustrates the averaged relative absolute errors,

that is, the average of relative absolute errors designated in

eq. (10) over all the 153 discussed molecules, at different mesh

sizes. It can be seen from Figure 3 that the averaged relative

absolute errors at all studied cases are less than 0:31%, and

for any grid spacing smaller than 1.1 Å, these errors are always

below 0.2%. This behavior further indicates the grid size inde-

pendence of our PB solver over the normal grid-size range in

molecular biophysical applications.

The influence of grid spacing in DDGel estimation

Motivated by well-converged estimations of electrostatic solva-

tion free energies at very coarse grid spacings as previously

discussed, we are interested in predicting the binding free

energies for all RNA-drug, barnase-barstar, and RNA-peptide

complexes using our MIBPB package.

Similar to the study of the convergence of DGel, we corre-

late the binding free energy calculated at the finest grid spac-

ing, h50:2 Å, and ones estimated at coarser mesh sizes, h50:3

Å,� � �, 1.1 Å. Figure 4 illustrates these relationships with the

regression lines whose parameters are revealed in Table 2. As

the previous discussion confirms MIBPB solver can produce

very good R-squared values even at very coarse grid spacings,

it is interesting to explore whether a similar behavior can be

found for binding energy estimation. Indeed, the PB binding

energy estimation behaves the same as the PB solvation calcu-

lation in our MIBPB technique. Specifically, R2 is always 1 at

the fine mesh, h50:3 Å. Moreover, these values are still satis-

factory at relatively coarser mesh sizes. For example, at the

grid spacing of h 5 1.1 Å, the R2 and slope of the regression

line for DNA-drug, barnase-barstar, and RNA-peptide com-

plexes are, respectively, (0.9747, 1.0081), (0.8002, 0.8187), and

(0.9998, 0.9937). Our statistical measures strongly support the

reliable binding energy prediction of our solver at coarse grid

sizes. Supporting Information Table S4 displays the binding

free energy for all complexes with different grid spacings. As

can be seen from Supporting Information Table S4, the differ-

ence between binding energies at coarse meshes and the fin-

est mesh, h50:2 Å, is mostly less than 10 kcal/mol for all

complexes.

The trend of binding free energy at different grid spacings

can be seen clearly in Figure 5 which plots DDGel against grid

sizes varying between 0.2 and 1.1 Å for DNA-drug complexes.

Similar figures for barnase-barstar and RNA-peptide complexes

can be referred to Figs. S1 and S2 in the Supporting Informa-

tion. Based on these figures, our solver can rank the binding

free energy for DNA-drug complexes at grid spacing of 0.6 Å,

barnase-barstar complexes at grid spacing of 0.6 Å, and RNA-

peptide complexes at significantly coarse grid spacing of 1.1

Å. To further assess the reliable estimates of binding energy of

our MIBPB solver, we consider the absolute difference between

results computed at a coarser grid spacing and the finest grid

spacing defined by

dDDGel5jDDGel;h2DDGel;h50:2j: (11)

Figure 6 plots the averaged absolute errors, dDDGel , that is,

the average of absolute errors defined in eq. (11) over all 51

complexes, at different mesh sizes. It is seen that even the use

Table 1. R2 values and best fitting lines of electrostatic solvation free

energies with different grid sizes.

Grid sizes (pair) R2 Best fitting line

DNA-drug (0.2,0.3) 1.0000 y51:0000x20:0196

(0.2,0.4) 1.0000 y51:0000x20:0081

(0.2,0.5) 1.0000 y51:0001x20:0621

(0.2,0.6) 1.0000 y51:0001x20:2230

(0.2,0.7) 1.0000 y51:0003x20:2537

(0.2,0.8) 1.0000 y51:0003x20:4161

(0.2,0.9) 1.0000 y51:0003x20:2999

(0.2,1.0) 1.0000 y51:0005x20:0066

(0.2,1.1) 1.0000 y51:0004x20:2485

Barnase-barstar (0.2,0.3) 1.0000 y51:0002x10:1590

(0.2,0.4) 1.0000 y51:0005x10:3524

(0.2,0.5) 1.0000 y51:0012x10:8735

(0.2,0.6) 1.0000 y51:0010x20:2246

(0.2,0.7) 1.0000 y51:0017x20:3748

(0.2,0.8) 1.0000 y51:0009x20:9576

(0.2,0.9) 0.9999 y51:0015x10:4749

(0.2,1.0) 0.9999 y50:9986x22:9739

(0.2,1.1) 0.9997 y50:9972x24:3801

RNA-peptide (0.2,0.3) 1.0000 y51:0000x20:0445

(0.2,0.4) 1.0000 y51:0000x20:1333

(0.2,0.5) 1.0000 y51:0000x20:3343

(0.2,0.6) 1.0000 y51:0000x20:1916

(0.2,0.7) 1.0000 y51:0001x20:5377

(0.2,0.8) 1.0000 y51:0001x20:8198

(0.2,0.9) 1.0000 y51:0002x20:9564

(0.2,1.0) 1.0000 y51:0003x20:8868

(0.2,1.1) 1.0000 y51:0005x22:2504

Figure 3. Averaged relative absolute error of the electrostatic solvation free

energies for all the 153 molecules with mesh size refinements from 1.1 to

0.2 Å. [Color figure can be viewed at wileyonlinelibrary.com]
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of grid spacing of 0.7 Å still delivers an averaged binding cal-

culation error under 1 kcal/mol for this set of complexes.

Therefore, we can draw a conclusion that the common use of

grid size being 0.5 Å is still adequate for predicting the bind-

ing energy free without producing a misleading result.

Grid positioning error is another feature to validate the

robustness and accuracy of a PB solver. To examine such

numerical error for our MIBPB solver, we consider two protein

complexes with PDBIDs: 360d and 1hji. To estimate the stan-

dard deviation, rbd in DDGel, we randomly generate 29 grid

positions around the initial origin with the amplitude of the

random seed being 60:5h, where h50:5 Å is the grid

spacing. Then DDGel is evaluated at all of the 30 grid positions.

Figure 7 plots electrostatic binding energies at 30 distinct sam-

ples of grid positions, including the original one marked by

Sample 0 on the graph. The rbd values of complexes 360d and

1hji are found to be 0.18 and 0.21, respectively. These results

indicate that the MIBPB solver is not sensitive to grid position.

To further support our calculations, we have used PBSA, Del-

phi, and APBS for electrostatic energy calculations at the grid

size of 0.2 Å. We note that results obtained from these solvers

are in excellent agreements, that is, R2 > 0:98, with ours. The

electrostatic energies calculated by PBSA, Delphi, and APBS

solvers are listed in Table S2 of Supporting Information.

Figure 4. Electrostatic binding free energy, for all complexes with different grid sizes plotted against the one computed with a finest grid size of h50:2 Å.

a) DNA-drug with pair (0.2 Å, 0.3 Å); b) DNA-drug with pair (0.2 Å, 0.7 Å); c) DNA-drug with pair (0.2 Å, 1.1 Å); d) Barnase-barstar with pair (0.2 Å, 0.3 Å); e)

Barnase-barstar with pair (0.2 Å, 0.7 Å); f ) Barnase-barstar with pair (0.2 Å, 1.1 Å); g) RNA-peptide with pair (0.2 Å, 0.3 Å); h) RNA-peptide with pair (0.2 Å,

0.7 Å); i) RNA-peptide with pair (0.2 Å, 1.1 Å). [Color figure can be viewed at wileyonlinelibrary.com]
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Concluding Remarks

PB theory is an established model for biomolecular electrostat-

ic analysis and has been widely used in electrostatic solvation

DGel and binding energy DDGel estimations. Accurate, efficient,

and reliable calculation of solvation and binding free energies

is of crucial importance to physics, chemistry, biology, and

material science. In this work, we use the MIBPB software[18,28]

to estimate electrostatic solvation free energy, DGel, and bind-

ing free electrostatic energy, DDGel, for the three sets of bio-

molecular complexes, namely, DNA-drug complexes, barnase-

barstar complexes, and RNA-peptide complexes. The popular

SES is adopted in the present work. In our DGel estimation,

the averaged relative absolute error computed at a relatively

coarse grid size of 1.1 Å against the finest grid size of 0.2 Å

over 153 studied biomolecules is less than 0.31%. The same

error obtained at the grid size of 1.0 Å is less than 0.2%. These

results indicate the reliability of using the MIBPB solver at the

grid spacing of 1.0 Å or even 1.1 Å for electrostatic solvation

analysis. The robustness and accuracy of MIBPB solver for esti-

mates of DGel have been reported for 24 proteins in the litera-

ture.[18,28] This characteristics has been confirmed again in the

present work for DNA-drug complexes, barnase-barstar com-

plexes, and RNA-peptide complexes.

The well-converged DGel produced by our solver enables a

promising performance in predicting DDGel at a coarse grid

Table 2. R2 values and best fitting lines of electrostatic binding free ener-

gies with different grid sizes.

Grid sizes (pair) R2 Best fitting line

DNA-drug (0.2,0.3) 1.0000 y50:9993x10:0194

(0.2,0.4) 0.9999 y50:9987x10:0273

(0.2,0.5) 0.9998 y51:0028x10:0164

(0.2,0.6) 0.9991 y51:0047x10:2256

(0.2,0.7) 0.9982 y51:0074x10:1394

(0.2,0.8) 0.9966 y51:0110x10:1484

(0.2,0.9) 0.9906 y50:9655x11:2385

(0.2,1.0) 0.9875 y50:9827x10:5894

(0.2,1.1) 0.9747 y51:0081x10:0709

Barnase-barstar (0.2,0.3) 0.9999 y50:9974x10:2035

(0.2,0.4) 0.9995 y50:9997x20:0492

(0.2,0.5) 0.9923 y51:0318x22:7755

(0.2,0.6) 0.9946 y50:9878x11:5525

(0.2,0.7) 0.9932 y51:0090x10:1819

(0.2,0.8) 0.9883 y50:9766x13:7333

(0.2,0.9) 0.9493 y50:9382x15:3970

(0.2,1.0) 0.9384 y51:0912x23:8377

(0.2,1.1) 0.8002 y50:8187x118:2837

RNA-peptide (0.2,0.3) 1.0000 y50:9997x20:0655

(0.2,0.4) 1.0000 y51:0001x20:1106

(0.2,0.5) 1.0000 y51:0012x20:2755

(0.2,0.6) 1.0000 y50:9999x10:2021

(0.2,0.7) 0.9999 y51:0037x20:3756

(0.2,0.8) 1.0000 y51:0004x10:6673

(0.2,0.9) 0.9999 y50:9927x11:9755

(0.2,1.0) 0.9997 y50:9923x12:8775

(0.2,1.1) 0.9998 y50:9937x11:7992

Figure 5. Binding electrostatic energy for DNA-drug complexes with grid

sizes from 0.2 to 1.1 Å. The markers and PDBIDs are as follows yellow cir-

cle: 102d, magenta circle: 109d, cyan circle: 121d, green circle: 127d, red cir-

cle: 129d, blue circle: 166d, black circle: 195d, yellow diamond: 1d30,

magenta diamond: 1d63, cyan diamond: 1d64, green diamond: 1d86, red

diamond: 1dne, blue diamond: 1eel, black diamond: 1fmq, yellow square:

1fms, magenta square: 1jtl, cyan square: 1lex, green square: 1prp, red

square: 227d, blue square: 261d, black square: 264d, yellow triangle: 289d,

magenta triangle: 298d, cyan triangle: 2dbe, green triangle: 302d, red trian-

gle: 311d, blue triangle: 328d, black triangle: 360d. [Color figure can be

viewed at wileyonlinelibrary.com]

Figure 6. Averaged absolute error of the binding free energies for all the

51 complexes with mesh size refinements from 1.1 to 0.2 Å. [Color figure

can be viewed at wileyonlinelibrary.com]

Figure 7. Binding energies of two complexes PDB IDs: 360d (marked by cir-

cle) and 1hji (marked by square) at 30 different grid positions. [Color figure

can be viewed at wileyonlinelibrary.com]
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spacing. Indeed, numerical estimates of DDGel in the current

work reveals that DDGel obtained at a 1.1 Å grid spacing most-

ly differ by less than 10 kcal/mol from that achieved using a

0.2 Å grid spacing. Moreover, MIBPB solver conducted at grid

size of 0.6 Å perfectly produces a well-converged DDGel, and

qualitatively ranks the complexes in term of their binding free

energies. Therefore, the current results support an opinion

that the widely used grid size of 0.5 Å can give reliable and

accurate enough predictions of both electrostatic free ener-

gy[34] and binding free energy.

To develop highly accurate, robust, and reliable PB solvers

for biomolecular electrostatics, it is crucial to validate one’s

numerical methods by appropriate norms and against realistic

problems. We emphasize that as an elliptic interface problem,

it is important to measure the convergence of PB solvers in

the L1 norm, or maximum absolute error, because integral

norms, such as L1 and L2, are insensitive to the performance of

numerical methods near the interface. Additionally, the conver-

gence should be tested by solving the PB equation, rather

than by calculating the solvation free energy. Finally, validation

should be carried out using the SESs of proteins, rather than

regular and simple surfaces, such as a sphere.

For protein-protein interactions involving multiprotein com-

plexes, a multiscale approach can be used to divide the com-

putational domain into small overlapping subdomains.[35] On

each subdomain, a finer grid is used. Iterations between the

global mesh and subdomain meshes are required to achieve a

uniform convergence. A multiscale MIBPB technique is under

our consideration.
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