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This article explores the impact of surface area, volume, curva-

ture, and Lennard–Jones (LJ) potential on solvation free ener-

gy predictions. Rigidity surfaces are utilized to generate robust

analytical expressions for maximum, minimum, mean, and

Gaussian curvatures of solvent–solute interfaces, and define a

generalized Poisson–Boltzmann (GPB) equation with a smooth

dielectric profile. Extensive correlation analysis is performed to

examine the linear dependence of surface area, surface

enclosed volume, maximum curvature, minimum curvature,

mean curvature, and Gaussian curvature for solvation model-

ing. It is found that surface area and surfaces enclosed vol-

umes are highly correlated to each other’s, and poorly

correlated to various curvatures for six test sets of molecules.

Different curvatures are weakly correlated to each other for six

test sets of molecules, but are strongly correlated to each oth-

er within each test set of molecules. Based on correlation

analysis, we construct twenty six nontrivial nonpolar solvation

models. Our numerical results reveal that the LJ potential plays

a vital role in nonpolar solvation modeling, especially for mole-

cules involving strong van der Waals interactions. It is found

that curvatures are at least as important as surface area or sur-

face enclosed volume in nonpolar solvation modeling. In con-

jugation with the GPB model, various curvature-based

nonpolar solvation models are shown to offer some of the

best solvation free energy predictions for a wide range of test

sets. For example, root mean square errors from a model con-

stituting surface area, volume, mean curvature, and LJ poten-

tial are less than 0.42 kcal/mol for all test sets. VC 2016 Wiley

Periodicals, Inc.

DOI: 10.1002/jcc.24512

Introduction

All essential biological processes, such as signaling, transcrip-

tion, cellular differentiation, and so forth, take place in an

aqueous environment. Therefore, a prerequisite of understand-

ing such biological processes is to study the solvation process,

which involves a wide range of solvent–solute interactions,

including hydrogen bonding, ion-dipole, induced dipole, and

dipole–dipole, hydrophobic/hydrophobic, dispersive attrac-

tions, or van der Waals forces. The most commonly available

experimental measurement of the solvation process is the sol-

vation free energy, that is, the energy released from the solva-

tion process. As a result, the prediction of solvation free

energy has been a main theme of solvation modeling and

analysis. Numerous computational models have been pro-

posed for solvation free energy prediction, including molecular

mechanics, quantum mechanics, statistical mechanics, integral

equation, explicit solvent models, and implicit solvent mod-

els.[1–3] Each approach has its own advantages, merits, and lim-

itations. Among these models, explicit[4] and quantum

methods[5,6] are ultimately for investigating the solvation of

relatively small molecules; however, a great number of degrees

of freedom for large systems may lead to unmanageable com-

putational cost. Implicit solvent models, on the contrary, can

lower the number of degrees of freedom by approximating

the solvent by a continuum representation and describing the

solute in atomistic detail.[7–9]

In implicit solvent models, the total solvation free energy is

divided into nonpolar and polar contributions.[10,11] There is a

wide range of implicit solvent models available to describe the

polar solvation process; nonetheless, Poisson–Boltzmann

(PB)[7,9,12–14] and generalized Born (GB) models[15–21] are com-

monly used. GB methods are very fast, but are only heuristic

models for the polar solvation analysis. PB methods can be

derived from fundamental theories[22,23]; therefore, can offer

somewhat of simple but satisfactorily accurate and robust sol-

vation energy estimations when handling large biomolecules.

To approximate the nonpolar solute–solvent interactions in

implicit solvent models, a common way is to assume the non-

polar solvation free energy being correlated with the solvent-

accessible surface area (SASA),[24,25] based on the scaled-

particle theory (SPT) for nonpolar solutes in aqueous solu-

tions.[26,27] However, recent studies indicate that solvation free

energy may depend on both SASA and solvent-accessible vol-

ume (SAV), especially in large length scale regimes.[28,29] It was

pointed out that, unfortunately, SASA-based solvation models
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do not capture the ubiquitous van der Waals (vdW) interac-

tions near the solvent–solute interface.[30] Indeed, the use of

SASA, SAV, and solvent–solute dispersive interactions to

approximate nonpolar energy significantly improves the accu-

racy of solvation free energy prediction.[31–34]

One of the most important tasks in handling the implicit

solvent models is to define the solute–solvent interface. Many

solvation quantities such as surface area, cavitation volume,

curvature of the surface, and electrostatic energies significantly

depend on the interface definition. The vdW surface, solvent

accessible surface,[35] and solvent excluded surface (SES)[36]

have shown their effectiveness in biomolecular modeling.

However, these surface definitions admit geometric singulari-

ties[37,38] which result in excessive computational instability

and algorithmic effort.[39–41] As a result, throughout the past

decade, many advanced surface definitions have been devel-

oped. One of them is the Gaussian surface description.[42–44]

Another approach is by means of differential geometry. The

first curvature induced biomolecular surface was introduced in

2005 using geometric partial differential equations (PDEs).[45]

The first variational molecular surface based on minimal sur-

face theory was proposed in 2006.[46,47] These surface defini-

tions lead to curvature controlled smooth solvent–solute

interfaces that enable one to generate a smooth dielectric pro-

file over solvent and solute domains. This development leads

to differential geometry-based solvation models[1,2] and multi-

scale models.[48–50] These models have been confirmed to

deliver excellent solvation free energy predictions.[33,34] Recent-

ly, a family of rigidity surfaces has been proposed in the

flexibility-rigidity index (FRI) method, which significantly out-

performs the Gaussian network model (GNM) and anisotropic

network model (ANM) in protein B-factor prediction.[51–54] Flex-

ibility is an intrinsic property of proteins and is known to be

important for protein drug binding,[55] allosteric signaling,[56]

and self-assembly.[57] It must play an important role in the sol-

vation process because of entropy effects. Therefore, FRI-based

rigidity surfaces, which can be regarded as generalizations of

classic Gaussian surfaces,[42–44] may have an advantage in sol-

vation analysis as well.

In molecular biophysics, curvature measures the variability

or nonflatness of a biomolecular surface and is believed to

play an important role in many biological processes, such as

membrane curvature sensing, and protein-membrane and pro-

tein DNA interactions. These interactions may be described by

the Canham–Helfrich curvature energy functional.[58] Due to its

potential contribution to the cavitation cost, curvature of the

solute–solvent surface is believed to affect the solvation free

energy.[59] By using SPT, the surface tension is assumed to

have a Gaussian curvature dependence.[59] The curvature in

such cases is locally estimated and is a function of the solvent

radius. Nevertheless, the quantitative contribution of various

curvatures to solvation free energy prediction has not been

investigated.

The objective of the present work is to explore the impact

of surface area, volume, curvature, and Lennard–Jones (LJ)

potential on the solvation free energy prediction. We are par-

ticularly interested in the role of Hadwiger integrals, namely

area, volume, Gaussian curvature, and mean curvature, to the

molecular solvation analysis. Therefore, we consider Gaussian

curvature and mean curvature, as well as minimum and maxi-

mum curvatures in the present work. For the sake of accurate

and analytical curvature estimation, we employ rigidity surfaces

that not admit geometric singularities. Unlike the geometric

flow surface in our previous work,[1,34] the construction of rigidi-

ty surfaces does not require a surface evolution; accordingly,

does not need parameter constraints to stabilize the optimiza-

tion process. In the current models, instead of local curvature

considered in other work,[59–61] total curvatures that are the

summations of absolute local curvatures are employed to mea-

sure the total variability of solvent–solute interfaces. We show

that curvature-based nonpolar solvation models offer some of

the best solvation predictions for a large amount of molecules.

The rest of this article is organized as follows. Models and

algorithms section presents the theory and formulation of new

solvation models. We first briefly introduce the rigidity surface

for the surface definition. A generalized PB equation using a

smooth dielectric function is formulated. We provide an

advanced algorithm for the evaluation of surface area and sur-

face enclosed volume. Analytical presentation for calculating

various curvatures, namely Gaussian curvature, mean curvature,

minimum, and maximum principal curvatures are presented.

Finally, we introduces a parameter learning algorithm to solva-

tion energy prediction. Results and discussions section is devot-

ed to numerical studies. First, we discuss the dataset used in

this work. Over a 100 molecules of both polar and nonpolar

types are employed in our numerical tests. We then discuss the

models and their abbreviations to be used in this study. The

numerical setups for nonpolar and polar solvation free energy

calculations are described in detail. We explore the correlations

between area, volume, and different types of curvatures. Based

on the root mean square error (RMSE) computed between

experimental and predicted results, we reveal the impact of

each interested nonpolar quantities on solvation free energy

prediction. The final part of results and discussions section is

devoted to the investigation of the most accurate and reliable

solvation model. This article ends with a conclusion.

Models and Algorithms

Solvation models

The solvation free energy, DG, is calculated as a sum of polar,

DGp, and nonpolar, Gnp, components

DG5DGp1Gnp: (1)

Here, DGp is modeled by the PB theory. For the nonpolar con-

tribution, we consider the following nonpolar solvation free

functional

DGnp5cA1pV1
X

j

kjCj1q0

ð
Xs

UvdWdr; (2)

where A and V are, respectively, the surface area and surface

enclosed volume of the solute molecule of interest.
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Additionally, c is the surface tension and p is the hydrodynam-

ic pressure difference. We denote Cj and kj, respectively, curva-

tures and associated bending coefficients of the molecular

surface. Thus, the index j runs from maximum curvature, mini-

mum curvature, mean curvature to Gaussian curvature. Here,

q0 is the solvent bulk density, and UvdW is the van der Waals

(vdW) interaction approximated by the LJ potential. The final

integral is computed solely over solvent domain Xs. One can

turn off certain terms in eq. (2) to arrive at simplified models.

Rigidity surface

Flexibility-rigidity index (FRI) has been shown to significantly

outperform other methods, such the Gaussian network model

(GNM) and anisotropic network model (ANM), in protein flexi-

bility analysis or B-factor prediction over hundreds of mole-

cules.[51–54] Given a molecule with N atoms, we denote rj the

position of jth atom, jjr2rjjj the Euclidean distance between a

point r and atom rj . In our FRI method, commonly used corre-

lation kernels or statistical density estimators[51,52,62] include

generalized exponential functions

U jjr2rjjj; gj

� �
5e2 jjr2rj jj=gjð Þj ; j > 0; (3)

and generalized Lorentz functions

U jjr2rjjj; gj

� �
5

1

11
jjr2rj jj

gj

� �m ; m > 0; (4)

where gj is a scale parameter. An atomic rigidity function lðrÞ
for an arbitrary point r on the computational domain can be

defined as

lðrÞ5
XN

j51

wjðrÞU jjr2rjjj; gj

� �
; (5)

where wjðrÞ is a weight function. The atomic rigidity function

lðrÞ measures the atomic density at position r. This intepreta-

tion can be easily verified since if we choose wjðrÞ such that

ð
lðrÞdr51:

Then, the atomic rigidity function lðrÞ becomes a probability

density distribution such that lðrÞdr is the probability of find-

ing all the N atoms in an infinitesimal volume element dr at a

given point r 2 R3. For U jjr2rjjj; gj

� �
5e2 jjr2rj jj=gjð Þ2

, one can

analytically choose wjðrÞ5 1
N

1
pg2

j

� �3
2

to normalize atomic rigidity

function lðrÞ.
For simplicity, in this work we just employ the Gaussian ker-

nel, that is, generalized exponential kernel with j 5 2, gj5rvdW
j

(i.e., the vdW radius of atom j), and wj 5 1 for all j51; 2; � � � ;N.

Other FRI kernels are found to deliver very similar results. Our

rigidity surfaces can be regarded as a generalization of Gauss-

ian surfaces.[18,63]

Smooth rigidity function-based dielectric function

We denote X the total domain, and X is divided into two

regions, that is, aqueous solvent domain Xs and solute molec-

ular domain Xm. Our ultimate goal is to construct a smooth

dielectric function in a similar way to that of differential

geometry-based solvation models as follows[1,2,48]

eðlÞ5ð12lÞes1lem; (6)

where �s and �m are the dielectric constants of the solvent and

solute, respectively. However the total atomic density

described in (5) exceeds 1 in many cases. As a result, we nor-

malize the atomic rigidity function as

�lðrÞ5 1

max r2X lðrÞ lðrÞ: (7)

Nonetheless, the dielectric function (6) is still not applicable

since the characteristic function 12�l may not capture the com-

monly defined solvent domain. This is due to the fact that the

value of �lðrÞ could be less than 1 inside the biomolecule. As a

result, we define the molecular domain as fr 2 XjlðrÞ � bg,
where b is a cut-off value defined in the protocol to attain the

best fitting against other PB solvers, such as MIBPB.[64] By doing

so, the dielectric function (6) will be modified as the following

eð�lðrÞÞ5
em; if �lðrÞ � b;

12
�l
b

� �
es1

�l
b

em; if �lðrÞ < b:

8><
>: (8)

Generalized Poisson–Boltzmann equation

With smooth dielectric profile being defined in (8), we arrive

at the GPB equation in an ion-free solvent

2r � eð�lÞr/ðrÞð Þ5�lqmðrÞ; (9)

where / is the electrostatic potential, qmðrÞ5
PNm

i Qidðr2riÞ
represents the fixed charge density of the solute. Here, QðriÞ is

the partial charge at ri in the solute molecule, and Nm is the

total number of partial charges.

Let X be the computational domain of the GPB equation.

Without considering the salt molecule in the solvent, we

employ the Dirichlet boundary condition via a Debye–H€uckel

expression for the GPB equation

/ðrÞ5
XNm

i51

Qi

esjjr2rijj
; 8r 2 @X: (10)

The electrostatic solvation free energy, DGp, is calculated by

DGp5
1

2

XNm

i51

QðriÞ /ðriÞ2/0ðriÞð Þ; (11)

where / and /0 are, respectively, the electrostatic potential in

the presence of the solvent and vacuum. In other words, / is
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a solution of the GPB eq. (9), and homogeneous solution /0 of

the GPB equation is obtained by setting dielectric function eð�l
Þ5em in the whole computational domain X.

Surface area and surface-enclosed volume

The surface integral for a density function f over C in the

domain X with a uniform mesh can be evaluated by[65–67]

ð
C

f ðx; y; zÞdS �
X
ði;j;kÞ2I

f ðx0; yj; zkÞ
jnxj

h
1f ðxi; y0; zkÞ

jny j
h

1f ðxi; yj; z0Þ
jnzj

h

� �
h3;

(12)

where ðx0; yj; zkÞ is the intersecting point between the inter-

face C and the x mesh line going through (i, j, k), and nx is the

x component of the unit normal vector at ðx0; yj; zkÞ. Similar

definitions are used for the y and z directions. We only carry

out the calculation (12) in a small set of irregular grid points,

denoted as I. Here, the irregular grid points are defined to be

the points associated with neighbor point(s) from the other

side of the interface C in the second order finite difference

scheme.[39] In this case, I will contain the irregular points near

interface C. Finally, h is the uniform grid spacing. The volume

integral can be simply approximated by

ð
Xm

f dr �
X
ði;j;kÞ2J

f ðxi; yj; zkÞh3; (13)

where Xm is the domain enclosed by C, and J is the set of all

grid points inside Xm. By considering the density function

f 5 1, eqs. (12) and (13) can be, respectively, used for the sur-

face area and volume calculations.

Curvature calculation

The evaluation of the curvatures for isosurface embedded volu-

metric data, Sðx; y; zÞ, has been reported in the literature.[47,68,69]

In general, there are two approaches for the curvature evalua-

tion. The first method is to invoke the first and second funda-

mental forms in differential geometry, the another one is to

make use of the Hessian matrix method.[70] Since both of these

algorithms yield the same results as shown in our earlier

work,[69] only the first approach is employed in the present

work. To this end, we immediately provide the formulation for

Gaussian curvature (K) and mean curvature (H) by means of the

first and second fundamental forms[68,69]

K5
2Sx Sy Sxz Syz12Sx SzSxy Syz12Sy Sz Sxy Sxz

g2

2
2Sx SzSxz Syy12Sy Sz Sxx Syz12Sx Sy Sxy Szz

g2

1
S2

z Sxx Syy1S2
x Syy Szz1S2

y Sxx Szz

g2

2
S2

x S2
yz1S2

y S2
xz1S2

z S2
xy

g2
;

(14)

and

H5
2Sx Sy Sxy12Sx Sz Sxz12Sy SzSyz2ðS2

y 1S2
z ÞSxx2ðS2

x 1S2
z ÞSyy2ðS2

x 1S2
yÞSzz

2g
3
2

;

(15)

where g5S2
x 1S2

y 1S2
z . With determined Gaussian and mean cur-

vatures, the minimum, j1, and maximum, j2, can be evaluated

by

j15min fH2
ffiffiffiffiffiffiffiffiffiffiffiffi
H22K
p

;H1
ffiffiffiffiffiffiffiffiffiffiffiffi
H22K
p

g;
j25max fH2

ffiffiffiffiffiffiffiffiffiffiffiffi
H22K
p

;H1
ffiffiffiffiffiffiffiffiffiffiffiffi
H22K
p

g:
(16)

We apply the formulations (14)–(16) for curvature calculations

of rigidity surfaces. Again, we only consider generalized expo-

nential kernel with j 5 2 and wj 5 1 for all j51; 2; �;N in this

article. As a result, the atomic rigidity function lðrÞ, defined in

(3) and (5), become

lðrÞ5
XN

j51

e
2

jjr2rj jj
gj

� �2

5
XN

j51

e
2
ðx2xj Þ21ðy2yj Þ21ðz2zj Þ2

g2
j : (17)

Note that derivatives of l can be analytically attained. There-

fore, by replacing S with l in various curvature formulas, we

obtain analytical expressions for different curvatures of FRI-

based rigidity surfaces. As a result, the calculation of various

curvatures is very simple and robust for rigidity surfaces.

Optimization algorithm

In this section, we present an algorithm, inspired by the algo-

rithm 2 in our earlier work,[34] to optimize the parameters

appearing in the nonpolar component. In this work, we utilize

the 12-6 LJ potential to model the van der Waals interaction

UvdW
i regarding an atom of type i

UvdW
i ðrÞ5ei

ri1rs

jjr2rijj

� �12

22
ri1rs

jjr2rijj

� �6
" #

; (18)

where �i is the well-depth parameter, ri and rs are, respective-

ly, the radii of the atom of type i and solvent. Here, r is the

location of an arbitrary point in the solvent domain, and ri is

the location of the atom of type i. Since the integral of the LJ

potential term involves in the solvent bulk density q0, the fit-

ting parameter for the van der Waals interaction of the atom

of type i will be~i¼: q0ei. Assume that we have a training group

containing n molecules, the process of calculating solvation

free energy will give us the following quantities for the jth ðj5
1; 2; � � � ; nÞ molecule

(
DGp

j ;Aj; Vj;C1j;C2j;C3j; C4j;
XNm

i51

d1
i

ð
Xs

UvdW
1 ðrÞdr

 !
j

; � � � ;

XNm

i51

dNt

i

ð
Xs

UvdW
Nt
ðrÞdr

 !
j

)
;

(19)

where Nm and Nt are the number of atoms and the number of

atom types in each individual molecule, respectively, and Cij
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denotes the ith curvature for the jth molecule. Here, dk
i is

defined as follows

dk
i 5

1; if atom i belongs to type k;

0; otherwise;

(
(20)

where k51; 2; � � � ;Nt and i51; 2; � � � ;Nm. We denote the

parameter set for the current training group as

P5 c; p; k1; � � � ; k4;~1;~2; � � � ;~Nt
f g. The solvation free energy for

molecule j will be then predicted by

DGj5DGp
j 1cAj1pVj1

X
i

kiCij1~1
XNm

i51

r1
i

Ð
Xs

UvdW
1 ðrÞdrÞj

 

1 � � �1~Nt

 XNm

i51

rNt

i

ð
Xs

UvdW
Nt
ðrÞdr

!
j

: (21)

It is noted that the fitting parameter of corresponding vanish-

ing term will set to 0 in the solvation free energy calculation

(21). We denote a vector of predicted solvation energies for

the given molecular group as DGðPÞ5ðDG1;DG2; � � � ;DGnÞ
which depends on the parameter set P. In addition, we denote

a vector of the corresponding experimental solvation free

energy as DGExp5ðDGExp
1 ;DGExp

2 ; � � � ;DGExp
n Þ. We then optimize

the parameter set P by solving the following minimization

problem

min
P
jjDGðPÞ2DGExpjj2
� �

; (22)

where jj � jj2 denotes the L2 norm of the quantity �. Optimiza-

tion problem (22) is a standard one which can be solved by

many available tools. In this work, we employ CVX software[71]

to deal with it.

Unlike our previous work,[34] we only need to generate the

fixed molecular surface and solve the GPB eq. (9) one time. We

will then utilize the optimization process (22) with obtained

quantities to achieve the optimized parameter set P.

Results and Discussions

Datasets

To study the impact of area, volume, curvature, and LJ poten-

tial on the solvation free energy prediction, we employ a large

number of solute molecules with accurate experimental solva-

tion values. These molecules are of both polar and nonpolar

types and are divided into six groups: the SAMPL0 test set[72]

with 17 molecules, alkane set with 35 molecules, alkene set

with 19 molecules, ether set with 15 molecules, alcohol set

with 23 molecules, and phenol set with 18 molecules sets.[73]

The charges of the SAMPL0 set are taken from the OpenEye-

AM1-BCC v1 parameters,[74] while their atomic coordinates and

radii are based on the ZAP-9 parametrization.[72] The structural

conformations for the other groups are adopted from Free-

Solv[73] with their parameter and coordinate information being

downloaded from Mobley’s homepage http://mobleylab.org/

resources.html.

Model abbreviation

It is noted that if we only consider area, volume, and van der

Waals interaction in nonpolar component computations, we

would arrive at the formulation already discussed in the litera-

ture.[1,32] However, the nonpolar component in this work

includes additional curvature terms. To investigate the impact

of area, volume, LJ potential and curvature on the solvation

free energy prediction, we benchmark different models con-

sisting of various terms in nonpolar free energy functionals. To

this end, we use the symbols listed in Table 1 to label a model

if it includes the corresponding terms in the nonpolar solva-

tion free functional. For example, model A only considers the

surface area term, whereas model AVL incorporates area (A),

volume (V), and LJ potential (L) terms in nonpolar energy

calculations.

Polar and nonpolar calculations

In this work, we employ rigidity surface,[51,52] discussed in

rigidity surface section, as the surface representation of a sol-

vent–solute interface. For simplicity, we implement the Gauss-

ian kernel for all tests, while other FRI kernels deliver similar

results.

Polar part. By following the paradigm for constructing a

smooth dielectric function in differential geometry-based sol-

vation models,[1,48] we propose a smooth rigidity-based dielec-

tric function as in eq. (8). The generalized Poisson–Boltzmann

(GPB) equation described in eq. (9) is used. For the current

framework, we consider the solvent environment without salt

and there is only one solvent component, water. The polar sol-

vation energy is then calculated as the difference of the GPB

energies in water and in a vacuum, and the detail of this rep-

resentation is offered in generalized Poisson–Boltzmann equa-

tion section. Similar results are obtained if we create a sharp

interface and then employ a standard PB solver to compute

the polar solvation energy.

In all calculations, the rigidity surface is constructed based

on the cut-off value being b50:09, and the dielectric constants

for solute and solvent regions are set to 1 and 80, respectively.

In addition, the grid spacing is set to 0.2 Å which ensures a

well-convergent surface generation and reliable PB calcula-

tions. In fact, the use of a smaller grid size, that is, 0.1 Å, does

not produce any significant difference (see Table S6 of Sup-

porting Information). The computational domain is the bound-

ing box of the molecular surface with an extra buffer length of

3 Å. The changes in RMS errors are less than 0.02 kcal/mol

Table 1. Model terminologies.

Symbols Meaning

A Gnp contains a area term

V Gnp contains a volume term

L Gnp contains a Lennard–Jones potential term

k1 Gnp contains a minimum curvature term

k2 Gnp contains a maximum curvature term

H Gnp contains a mean curvature term

K Gnp contains a Gaussian curvature term

FULL PAPER WWW.C-CHEM.ORG

28 Journal of Computational Chemistry 2017, 38, 24–36 WWW.CHEMISTRYVIEWS.COM

http://mobleylab.org/resources.html
http://mobleylab.org/resources.html


when the buffer length is extended to 6 Å. Since the dielectric

profile in the GPB equation is smooth throughout the compu-

tational domain, one can easily make use of the standard sec-

ond order finite difference scheme to numerically solve the

GPB equation. Then, a standard Krylov subspace method-

based solver[1,2] is employed to handle the resulting algebraic

equation system.

Nonpolar part. To estimate the surface area and surface

enclosed volume for a rigidity surface, we utilize a stand-alone

algorithm based on the marching cubes method, and the

detail of this procedure is referred to surface area and surface-

enclosed volume section Thanks to the use of the rigidity sur-

face, the curvature of a solvent–solute interface can be analyti-

cally determined instead of using numerical approximations as

in our earlier differential geometry model.[69] To prevent the

curvature from canceling each other at different grid points,

we construct total curvatures defined as

Cj5
X
ri2I

jcjðriÞjh2; (23)

where ri is the position of the ith grid point, I is a set of irreg-

ular grid points in the region of the solvent–solute bound-

ary[39–41] and h is the mesh size of the uniform computational

domain. Here, cjðriÞ is the jth type of curvature at position ri ,

and index j runs through minimum, maximum, mean, and

Gaussian curvatures. Since the full standard 12-6 LJ potential

improves accuracy of the solvation free energy prediction,[3,34]

it is utilized to model the vdW interaction UvdW in the current

work.

Similar to our previous work,[34] an optimization process as

discussed in optimization algorithm section is applied to deter-

mine the optimal parameters for the nonpolar free energy cal-

culations. Unfortunately, the involvement of the solvent radius

in the LJ potential term features a high nonlinearity. Conse-

quently, it cannot be incorporated into the parameter optimi-

zation. Instead, we resort to a brute force approach to

determine the most favorable solvent radius for six molecular

sets including SAMPL0, alkane, alkene, ether, alcohol, and phe-

nol groups. The value of rs that mostly produces the smallest

RMS error between predicted and experimental solvation free

energies will be employed in all numerical calculations. By

considering model AVHL, we depict the relations between

RMS errors and the solvent radii varying from 0.5 Å to 3.5 Å

with the increment of 0.5 Å in Figure 1. This figure reveals

that the use of rs51 Å will give us the smallest RMS errors in

all test sets except alkane and alkene sets. Therefore, we utilize

solvent radius 1 Å for the current work.

Correlations between area, volume, and curvatures

Understanding the correlation or noncorrelation between dif-

ferent modeling components is important for analyzing solva-

tion models. A strong correlation between any pair of

components indicates their strong linear dependence and

redundancy in optimization-based solvation modeling. While a

weak correlation implies their complementary roles in an

optimization-based solvation modeling.

Correlation between areas and volumes. Figure 2 shows the

correlation between surface areas and surface enclosed vol-

umes for 127 molecules studied in this work. Apparently, their

surface areas and surface enclosed volumes are highly correlat-

ed to each other. The best fitting line and R2 found in this

numerical experiment are, respectively, y51:55x266:51 and

0.99. A similar correlation was reported in the literature.[75]

Therefore, it is computationally inefficient to simultaneously

include both area and volume components in a solvation

model. However, physically, it is perfectly fine to have both

area and volume in a solvation model as surface area repre-

sents the energy induced by the surface tension, whereas sur-

face enclosed volume describes the work required to create a

cavity in the solvent for a solute molecule. Mathematically, the

correlation between surface areas and volumes of a group of

solute molecules can be due to their similarity in their spherici-

ty measurements.[76] Therefore, the surface areas and volumes

Figure 1. The relations between the solvent radii and the RMS errors for

model AVHL. Red circle: SAMPL0 set; blue diamond: alkane set; black

square: alkene set; green triangle: ether set; pink cross: alcohol set; cyan

asterisk: phenol set. [Color figure can be viewed at wileyonlinelibrary.com]

Figure 2. Area versus volume over 127 molecules in all six groups.

R250:99, and fitting line: y51:55x266:51. [Color figure can be viewed at

wileyonlinelibrary.com]
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of lipid bilayer sheets will not be correlated with those of

micelles or liposomes.

Correlation between areas and curvatures. We next investigate

the correlations between surface areas and four different types

of curvatures for 127 molecules. Our results are depicted in

Figure 3. Obviously, the correlation between surface areas and

maximum curvatures is the highest among curvature counter-

parts. The R2 value for the best fitting line is 0.73. However,

mean curvatures, Gaussian curvatures and minimum curva-

tures do not relate to surface areas very well. Their R2 values

for the best fitting lines are 0.47, 0.22, and 0.32, respectively,

which are unsatisfactory.

These results are expected because maximum curvatures

are mostly rendered from the convex surfaces of the molecular

rigidity surface manifold, whereas minimum curvatures corre-

spond to the concave surfaces of the molecular rigidity surface

manifold. Topologically, in spirit of Morse–Smale theory, a fami-

ly of extreme values of minimum curvatures defined at various

isosurfaces gives rise to a natural decomposition of molecular

rigidity density and leads to “rigidity complex.” The mean cur-

vature is the average of minimum and maximum curvatures.

The Gaussian curvature, as the product of two principle curva-

tures, correlates the least to the surface area for 127 molecules

studied. Therefore, compared to volumes, Gaussian, and mini-

mum curvatures are complementary to surface areas and thus,

are more useful for solvation modeling in general.

However, a careful examination of Figure 3 reveals certain

linear features. To understand the origin of the data alignment

in Figure 3, we analyze the correlations between surface areas

and curvatures in six test sets. Figure 4 depicts these correla-

tions. Obviously, there are good correlations in each test set.

The best fitting lines and R2 values of the corresponding date

are reported in Table 2. These data further indicate that sur-

face area and curvature quantities in each test set are well cor-

related; specifically, R2 values of them are always larger than

0.89. By averaging over six groups, the maximum curvature

has the highest correlation with surface area, following by

mean curvature, minimum curvature, and Gaussian curvature.

Surprisingly, for mean, Gaussian, and minimum curvatures,

such well correlations only occur in individual test sets.

Figure 3. Area versus curvatures over 127 molecules in all six groups. R2 values of the best fitting lines are 0.47, 0.22, 0.32, and 0.73, respectively for mean,

Gaussian, minimum, and maximum curvatures. [Color figure can be viewed at wileyonlinelibrary.com]
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Moreover, the slopes of fitting lines in Table 2 indicates that

the curvatures and areas in alkane, alkene, and ether sets are

well correlated. A possible reason for this correlation is that

structures of the molecules in these three groups are quite

similar to each other.

Correlation between different curvatures. Additionally, we are

interested in finding the correlations between different curva-

tures. Such a finding enables us to determine how many cur-

vature terms in an efficient solvation model. Figure 5 depicts

the correlation data between mean curvature and other types

of curvatures for each group. As expected, different types of

curvature are correlated to each other extremely well for each

group. Table 3 provides the best fitting lines and R2 values for

such correlations, and we can see that R2 for any case is

always higher than 0.95. Based on this correlation analysis, it is

clear that different curvatures will have the same modeling

effect in solvation analysis and thus at most one type of

curvature term is needed in an efficient solvation model. The

correlations among different curvatures for all 127 molecules

are illustrated in Figure S1 in Supporting Information.

The influence of surface area, volume, curvatures, and LJ

potential on the accuracy of solvation free energy prediction

To examine the impact of area, volume, curvature, and LJ

potential in the solvation prediction, we first explore seven dif-

ferent models including H, A, L, AH, HL, AHL, and AVHL to

predict the solvation free energy for SAMPL0 test set. For the

sake of simplicity, we use short notations to represent 17 mol-

ecules in SAMPL0 test set, and their full names are given in

the caption of Table 4. Judging by RMS errors evaluated

between the experimental and predicted solvation free ener-

gies, Table 4 reveals that LJ potential plays an important role

in the accuracy of the solvation free energy prediction. If we

only consider this term in the nonpolar calculation, that is,

Figure 4. Area versus minimum, maximum, mean, and Gaussian curvatures. Blue diamond: area versus minimum curvature, black square: area versus maxi-

mum curvature, green triangle: area versus mean curvature, pink star: area versus Gaussian curvature. Six groups are labeled as: a) SAMPL0 set, b) alkane

set, c) alkene set, d) ether set, e) alcohol set, and f ) phenol set. [Color figure can be viewed at wileyonlinelibrary.com]

Table 2. R2 values and best fitting lines between area and curvature measurements.

Area vs. min. curv. Area vs. max. curv. Area vs. mean curv. Area vs. Gaussian curv.

Group fitting line R2 fitting line R2 fitting line R2 fitting line R2

SAMPL0 y58:07x2262:51 0.96 y56:86x1141:72 0.95 y56:08x25:05 0.95 y51:86x122:05 0.90

Alkane y52:75x1210:87 0.95 y54:21x1299:83 0.99 y52:34x1340:21 0.98 y50:76x180:84 0.93

Alkene y53:24x1183:15 0.90 y54:49x1288:34 0.99 y52:55x1340:27 0.95 y50:93x168:51 0.87

Ether y53:83x170:92 0.91 y54:45x1283:94 0.99 y52:91x1273:88 0.94 y51:09x138:78 0.91

Alcohol y56:89x187:63 0.99 y55:29x1261:34 1.00 y54:69x1221:01 0.99 y52:32x134:15 0.99

Phenol y58:58x2330:11 0.94 y55:56x1161:15 0.98 y55:56x19:16 0.95 y52:77x2108:17 0.93
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model L, the RMS error for this case is as low as 1.07 kcal/mol,

which is a very reasonable result in comparison to those

reported in the literature, such as 0.60 kcal/mol in Ref. [34],

and 1.71 6 0.05 kcal/mol in Ref. [72]. Conversely, if the LJ

potential is absent in nonpolar calculations, the solvation free

energy prediction performs poorly for SAMPL0. To be specific,

the RMS errors for models H, A, and AH listed in Table 4 are

all over 1.75 kcal/mol. As the previous analysis in correlations

between area, volume, and curvatures section, mean curvature

and area are well correlated; therefore, the RMS errors for

models H and A are very similar and are, respectively, 2.34 and

2.27. Even the combination of them in model AH does not

improve the solvation prediction very much, and its RMS error

is found to be 1.78. Due to correlations, models involving only

different types of curvatures and volume will have the similar

results (data not shown). Conversely, the mixture of LJ poten-

tial and other quantities can significantly improve the solvation

prediction accuracy. To be specific, Table 4 shows that the

RMS errors for models HL, AHL are 0.43 and 0.36, respectively,

which are much smaller than other predictions of SAMPL0 test

set in the literature. Because of the high correlation among

volume, curvatures, and surface area, the utilization of model

AVHL does not improve prediction, and its RMS error, 0.35, is

slightly better than of AHL.

The best all around model for predicting the solvation free

energy

Finally, we determine which model will have the best solvation

free energy prediction in each group, and then which one will

provide an good prediction on average. Table 5 lists all the

RMS errors of 26 models over six groups including SAMPL0,

alkane, alkene, ether, alcohol, and phenol sets. These results

again confirm the important role of LJ potential in the accura-

cy of solvation energy prediction as other studies have not-

ed.[32,75,77,78] The RMS errors of model L for SAMPL0, alkane,

Figure 5. Mean curvature versus minimum, maximum, and Gaussian curvatures. Green triangle: mean curvature versus Gaussian curvature, blue diamond:

mean curvature versus minimum curvature, black square: mean curvature versus maximum curvature. Six groups are labeled as: a) SAMPL0set, b) alkane

set, c) alkene set, d) ether set, e) alcohol set, and f ) phenol set. [Color figure can be viewed at wileyonlinelibrary.com]

Table 3. R2 values and best fitting lines between mean curvature and another types of curvatures.

Mean curv. vs. min. curv. Mean curv. vs. max. curv. Mean curv. vs. Gaussian curv.

Group fitting line R2 fitting line R2 fitting line R2

SAMPL0 y51:42x234:72 0.99 y51:16x119:71 0.98 y50:54x212:48 0.97

Alkane y51:19x232:63 0.99 y51:79x249:63 0.99 y50:34x24:92 0.96

Alkene y51:27x240:51 0.98 y51:70x242:13 0.98 y50:38x28:32 0.96

Ether y51:33x249:84 0.99 y51:52x219:49 0.97 y50:40x212:01 0.98

Alcohol y51:52x219:20 1.00 y51:08x15:87 1.00 y50:89x213:79 1.00

Phenol y51:57x226:77 1.00 y51:03x117:22 0.98 y50:87x218:57 0.99
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alkene, ether, alcohol, and phenol sets are, respectively, 1.07,

0.29, 0.34, 0.23, 0.28, and 0.55. It is obvious that these predic-

tions are still not the best performance in comparison to other

work such as that in Ref. [34]. This is easy to apprehend

because model L only consists of LJ potential while that in our

previous work[34] includes surface area, volume, and LJ poten-

tial itself. While models lacking of LJ potential usually perform

poorly in solvation free energy prediction. Specially, for

SAMPL0 the RMS errors of those models are larger than 2.0.

However, for the rest of the test sets, the RMS errors of models

without LJ potential are always under 0.85. Especially, in

alkene test set, model K delivers a better RMS error, 0.32, than

that of model L, 0.34.

This is probably because hydrophobic compounds in alkane

and alkene groups contain only carbon and hydrogen and are

very uniform. Whereas other test sets contain oxygen or

nitrogen that has strong vdW interactions[75] and thus prefer

the LJ potential.

As expected, more quantities appearing in the nonpolar com-

ponent will produce a better solvation prediction in general.

Table 5 indicates that two-term models always outperform relat-

ed single-term models. Similar patterns can be found for three-

term models and four-term models. The best results at each level

of modeling are highlighted in Table 5. On average, model AVHL

produces the best RMS errors. Its RMS errors for six groups in

the discussed order are 0.35, 0.18, 0.18, 0.11, 0.15, and 0.41,

respectively. To demonstrate the accuracy of model AVHL, Figure

6 depicts its predicted and experimental solvation free energies

for SAMPL0, alkane, alkene, ether, alcohol, and phenol sets. Since

the results of SAMPL0 has been reported in Table 4, in the Sup-

porting Information we only list the data for alkane, alkene,

ether, alcohol, and phenol tests in Tables S1–S4, respectively.

Table 4. The solvation free energy prediction for the SAMPL0 set with different models.

M01 M02 M03 M04 M05 M06 M07 M08 M09 M10 M11 M12 M13 M14 M15 M16 M17

DGExp[72] 28.84 22.38 21.93 1.07 211.01 29.76 24.23 24.97 23.28 25.05 26.00 22.93 26.34 23.54 21.43 24.08 29.81

DGp 25.27 22.10 22.17 21.45 24.43 23.82 21.52 23.78 20.99 21.98 23.54 21.37 23.45 20.97 21.14 23.43 24.93

H DGH 22.79 21.83 21.78 23.17 22.33 22.29 22.01 22.32 22.09 21.43 22.31 21.51 22.07 22.20 21.85 21.85 21.31

DG 28.06 23.93 23.95 24.62 26.76 26.10 23.54 26.10 23.08 23.41 25.85 22.89 25.52 23.18 22.99 25.27 26.24

Error 20.78 1.55 2.02 5.69 24.25 23.66 20.69 1.13 20.20 21.64 20.15 20.04 20.82 20.36 1.56 1.19 23.57

RMSE 2.34

A DGA 22.94 21.94 21.92 23.01 22.61 22.50 22.03 22.22 22.14 21.52 22.45 21.51 22.17 22.31 21.88 21.96 21.30

DG 28.21 24.04 24.09 24.45 27.04 26.32 23.55 26.00 23.13 23.50 25.99 22.88 25.62 23.28 23.02 25.39 26.23

Error 20.63 1.66 2.16 5.52 23.97 23.44 20.68 1.03 20.15 21.55 20.01 20.05 20.72 20.26 1.59 1.31 23.58

RMSE 2.27

L DGL 23.37 20.28 21.79 2.52 24.29 24.21 22.36 22.49 22.99 21.96 22.89 21.98 22.57 23.13 20.29 21.76 26.03

DG 28.64 22.38 23.96 1.07 28.72 28.02 23.88 26.27 23.98 23.94 26.43 23.36 26.02 24.10 21.43 25.19 210.96

Error 20.20 0.00 2.03 0.00 22.29 21.74 20.35 1.30 0.70 21.11 0.43 0.43 20.32 0.56 0.00 1.11 1.15

RMSE 1.07

A DGA 240.93 227.04 226.78 241.87 236.39 234.89 228.24 230.98 229.79 221.16 234.10 221.03 230.23 232.14 226.13 227.36 218.10

H DGH 37.41 24.46 23.83 42.47 31.18 30.61 26.95 31.13 28.01 19.12 30.96 20.27 27.66 29.52 24.79 24.74 17.55

DG 28.79 24.68 25.11 20.85 29.64 28.10 22.82 23.64 22.77 24.02 26.68 22.13 26.02 23.58 22.47 26.04 25.48

Error 20.05 2.30 3.18 1.92 21.37 21.66 21.41 21.33 20.51 21.03 0.68 20.80 20.32 0.04 1.04 1.96 24.33

RMSE 1.78

H DGH 27.06 17.69 17.23 30.71 22.55 22.14 19.49 22.51 20.26 13.83 22.39 14.66 20.01 21.35 17.93 17.89 12.69

L DGL 231.17 217.97 217.47 228.20 228.74 227.41 222.11 222.81 223.02 216.59 225.41 215.62 223.01 224.09 218.22 218.77 217.87

DG 29.38 22.38 22.40 1.07 210.61 29.09 24.15 24.07 23.75 24.74 26.55 22.34 26.45 23.71 21.43 24.31 210.11

Error 0.54 0.00 0.47 0.00 20.40 20.67 20.08 20.90 0.47 20.31 0.55 20.59 0.11 0.17 0.00 0.23 0.30

RMSE 0.43

A DGA 25.16 16.62 16.46 25.74 22.37 21.45 17.36 19.05 18.31 13.01 20.96 12.93 18.58 19.75 16.06 16.82 11.13

H DGH 15.70 10.26 10.00 17.82 13.08 12.84 11.31 13.06 11.75 8.02 12.99 8.50 11.61 12.39 10.40 10.38 7.36

L DGL 244.94 227.17 226.35 241.04 241.61 239.87 231.35 232.88 233.15 223.93 236.59 222.18 233.03 234.67 226.75 228.12 223.60

DG 29.35 22.38 22.06 1.07 210.58 29.40 24.21 24.55 24.08 24.88 26.17 22.12 26.29 23.50 21.43 24.35 210.04

Error 0.51 0.00 0.13 0.00 20.43 20.36 20.02 20.42 0.80 20.17 0.17 20.81 20.05 20.04 0.00 0.27 0.23

RMSE 0.36

A DGA 21.86 14.44 14.30 22.36 19.44 18.63 15.08 16.55 15.91 11.30 18.22 11.23 16.15 17.16 13.95 14.61 9.67

V DGV 4.46 2.69 2.67 5.07 3.90 3.73 2.69 3.12 2.95 1.95 3.61 1.87 3.16 3.13 2.54 2.74 1.54

H DGH 17.68 11.56 11.26 20.07 14.73 14.46 12.73 14.71 13.24 9.04 14.63 9.58 13.07 13.95 11.71 11.69 8.29

L DGL 247.99 228.97 228.08 244.98 244.22 242.33 233.20 235.10 235.15 225.47 239.00 223.55 235.24 236.76 228.50 230.11 224.63

DG 29.26 22.38 22.02 1.07 210.58 29.32 24.21 24.49 24.04 25.16 26.08 22.24 26.31 23.49 21.43 24.50 210.06

Error 0.42 0.00 0.09 0.00 20.43 20.44 20.02 20.48 0.76 0.11 0.08 20.69 20.03 20.05 0.00 0.42 0.25

RMSE 0.35

Energy is in the unit of kcal/mol. M01: Glycerol triacetate; M02: Benzyl bromide; M03: Benzyl chloride; M04: m-bis (trifluoromethyl) benzene; M05: N,N-

dimethyl-p-methoxybenz; M06: N,N-4-trimethylbenzamide; M07: bis-2-chloroethyl ether; M08: 1,1-diacetoxyethane; M09: 1,1-diethoxyethane; M10: 1,4-

dioxane; M11: Diethyl propanedioate; M12: Dimethoxymethane; M13: Ethylene glycol diacetate; M14: 1,2-diethoxyethane; M15: Diethyl sulfide; M16: Phe-

nyl formate; and M17: Imidazole.
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By a comparison with our earlier work,[1,34] the current mod-

els yield better solvation predictions for all test sets. The earlier

work[1,34] employs model AVL and invokes sophisticated math-

ematical algorithms, such as differential geometry and con-

strained optimization. The present approach utilizes FRI-based

rigidity surfaces which are very simple, stable, and robust.

Additionally, as an intrinsic property of a protein,[55,57] flexibili-

ty plays an important role in the solvation process. The use

FRI-based rigidity surfaces enables us to build the flexibility

feature in our solvation analysis. Consequently, many of the

present two-term models, such as AL, KL, and HL, are able to

deliver better predictions on all test sets. The predictions of

the present AVL model are much better than those of our ear-

lier AVL model.[34]

Table 5 reveals that models involving various curvatures are

able to deliver some of the best results at each level of model-

ing. For example, at the single-term level of modeling, the

Gaussian curvature model, K, gives rise to better prediction for

the alkene set. At the two-term level of modeling, models HL,

k1L, and KL provide the best predictions for SAMPL0, alkane,

and alkene sets, respectively. At three-term and four-term lev-

els of modelings, most best predictions are generated by

curvature-based models. Since curvatures are calculated ana-

lytically in the rigidity surface representation,[51–53] the use of

curvatures is very robust and simple in the present work, see

curvature calculation section. Therefore, the present work

Table 5. The RMS errors (in the unit of kcal/mol) for 26 models.

ModelnGroup SAMPL0 Alkane Alkene Ether Alcohol Phenol

A 2.27 0.40 0.35 0.84 0.57 0.59

V 2.34 0.44 0.39 0.85 0.62 0.61

L 1.07 0.29 0.34 0.23 0.28 0.55

k1 2.35 0.41 0.33 0.83 0.54 0.63

k2 2.32 0.40 0.33 0.81 0.52 0.59

K 2.23 0.43 0.32 0.83 0.54 0.64

H 2.34 0.41 0.33 0.81 0.51 0.61

AL 0.45 0.23 0.20 0.23 0.28 0.54

VL 1.06 0.28 0.33 0.19 0.18 0.44

k1L 0.66 0.22 0.19 0.23 0.28 0.48

k2L 0.65 0.23 0.23 0.22 0.28 0.54

KL 0.52 0.23 0.18 0.23 0.28 0.47

HL 0.43 0.23 0.24 0.22 0.28 0.53

AVL 0.45 0.19 0.19 0.17 0.17 0.42

Ak1L 0.36 0.22 0.19 0.22 0.28 0.46

Ak2L 0.45 0.23 0.19 0.12 0.19 0.53

AKL 0.31 0.23 0.19 0.23 0.27 0.43

AHL 0.36 0.22 0.18 0.14 0.18 0.53

Vk1L 0.53 0.21 0.19 0.19 0.17 0.41

Vk2L 0.50 0.19 0.20 0.18 0.17 0.42

VKL 0.46 0.20 0.17 0.18 0.17 0.41

VHL 0.40 0.20 0.22 0.19 0.18 0.41

AVk1L 0.31 0.19 0.18 0.14 0.17 0.41

AVk2L 0.45 0.18 0.19 0.12 0.16 0.42

AVKL 0.28 0.19 0.17 0.14 0.17 0.41

AVHL 0.35 0.18 0.18 0.11 0.15 0.41

The highlighted numbers indicate the best RMS error in a particular

category.

Figure 6. Comparison of AVHL’s predicted and experiment solvation free energies for six groups. a) SAMPL0, b) alkene, c) alkene, d) ether, e) alcohol, f )

phenol. In all charts, red circles for the predicted data, solid lines for the experiment data. [Color figure can be viewed at wileyonlinelibrary.com]
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establishes curvature as a robust, efficient, and powerful

approach for solvation analysis and prediction.

Fivefold validation

To further estimate how accurately the models with optimized

parameters perform in practice, we carry out fivefold cross val-

idation. In this evaluation, each group of molecules is parti-

tioned into five subgroups as uniformly as possible. Of five

subgroups, we leave out one subgroup and employ model

AVHL for the rest four subgroups of molecules. The optimized

parameters are then utilized for the left out subgroup. Table 6

lists training errors and validation errors. It is seen that these

two errors are of the same level, indicating the present meth-

od performs well.

Conclusion

Solvation analysis is a fundamental issue in computational bio-

physics, chemistry, and material science and has attracted

much attention in the past two decades. Implicit solvent mod-

els that split the solvation free energy into polar and nonpolar

contributions have been a main workhorse in solvation free

energy prediction. While the PB theory is a well-established

model for polar solvation energy prediction, there is no gener-

al consensus about what constitutes a good nonpolar compo-

nent. This article explores the impact of area, volume,

curvature, and LJ potential to the accuracy of the solvation

free energy prediction in conjugation with a PB-based polar

solvation model. To this end, 26 models involving the presence

of different quantities in the nonpolar component are system-

atically studies in the current work. Some of these models that

consist of Gaussian curvature, mean curvature, minimum cur-

vature, or maximum curvature are first known to our

knowledge.

To analytically evaluate molecular curvatures, we utilize

rigidity surfaces[51–53] as the molecular surface representation.

Since the use of the rigidity surface does not require a surface

evolution as in previous approaches,[1,33,34] the algorithm for

achieving parameter optimization in the nonpolar component

is much simpler than that in our earlier work.[34] To benchmark

our models, we employ the SAMPL0 test set with 17 mole-

cules, alkane set with 35 molecules, alkene set with 19 mole-

cules, ether set with 15 molecules, alcohol set with 23

molecules, and phenol set with 18 molecules.

We first carry out intensive correlation analysis. It is found

that surface areas and surface enclosed volumes are highly

correlated for the aforementioned molecules, whereas various

curvatures are poorly correlated to surface areas. Therefore,

curvatures are complementary to surface areas and surface

enclosed volumes in solvation modeling. Nevertheless, for a

given set of similar molecules, maximum, minimum, mean,

and Gaussian curvatures and Gaussian curvatures are highly

correlated to each other and to surface areas.

Based on the correlation analysis, a total 26 nontrivial mod-

els are constructed and examined against 6 test sets of mole-

cules. Numerous numerical experiments indicate that the LJ

potential is essential to the accuracy of solvation free energy

prediction, especially for molecules involving strong van der

Waals interactions or attractive dispersive effects. However, it is

found that various curvatures are at least as useful as surface

area and surface enclosed volume in nonpolar solvation

modeling. Many curvature-based models deliver some of the

best solvation free energy predictions. The use of curvatures

for the prediction protein–ligand binding affinity is under our

consideration.
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