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Flexibility-rigidity index (FRI) has been developed as a robust, accurate, and efficient method
for macromolecular thermal fluctuation analysis and B-factor prediction. The performance of FRI
depends on its formulations of rigidity index and flexibility index. In this work, we introduce
alternative rigidity and flexibility formulations. The structure of the classic Gaussian surface is
utilized to construct a new type of rigidity index, which leads to a new class of rigidity densities with
the classic Gaussian surface as a special case. Additionally, we introduce a new type of flexibility
index based on the domain indicator property of normalized rigidity density. These generalized
FRI (gFRI) methods have been extensively validated by the B-factor predictions of 364 proteins.
Significantly outperforming the classic Gaussian network model, gFRI is a new generation of
methodologies for accurate, robust, and efficient analysis of protein flexibility and fluctuation. Finally,
gFRI based molecular surface generation and flexibility visualization are demonstrated. Published by
AIP Publishing. [http://dx.doi.org/10.1063/1.4953851]

In living organisms, proteins carry out a vast variety of
basic functions, such as structure support, catalyzing chemical
reactions, and allosteric regulation, through synergistic
interactions or correlations. Protein functions and interactions
are determined by protein structure and flexibility.10 The
importance of protein structure needs no introduction, while
the importance of protein flexibility is often overlooked.
Protein flexibility is an intrinsic property of proteins and
can be measured by experimental means, including X-ray
crystallography, nuclear magnetic resonance (NMR), and
single-molecule force spectroscopy, e.g., magnetic tweezer,
optical trapping, and atomic force microscopy.9 Flexibility
analysis offers a unique channel for theoretical modeling to
meet with experimental observations. A variety of theoretical
methods, such as normal mode analysis (NMA),6,11,17,19,25

graph theory,15 rotation translation blocks (RTB) method,8,23

and elastic network model (ENM),2–4,14,18,24 including
Gaussian network model (GNM)3,4 and anisotropic network
model (ANM),2 have been proposed. Among them, GNM
is often favored due to its accuracy and efficiency.34 These
time-independent methods have been widely used not only for
protein fluctuation analysis but also for entropy estimation.
However, they typically suffer from two major drawbacks: (1)
O(N3) scaling in computational complexity with N being the
number of elements in the involved matrix and (2) insufficient
accuracy in protein B-factor predictions. The above scaling in
computational complexity is due to the matrix diagonalization
and makes large biomolecules inaccessible to aforementioned
methods. Recently, Park et al. have shown that for three sets
of structures of small-sized, medium-sized, and large-sized,
the mean correlation coefficients (MCCs) for NMA and GNM

a)Author to whom correspondence should be addressed. Electronic mail:
wei@math.msu.edu

B-factor predictions are, respectively, below 0.5 and 0.6.22

These researchers found that both NMA and GNM fail to
work for many structures and deliver negative correlation
coefficients.22 These problems call for the development of
accurate, efficient, and reliable approaches for the flexibility
analysis and entropy calculation of macromolecules.

One strategy to tackle the above-mentioned challenges is
to develop matrix-diagonalization-free methods for flexibility
analysis. To this end, we have introduced molecular nonlinear
dynamics,32 stochastic dynamics,31 and flexibility-rigidity
index (FRI).20,29 Our approaches make use of protein network
connectivity and centrality to describe protein flexibility
and rigidity. In our FRI method, we assume that protein
interactions, including those with its environment, fully
determine its structure in the given environment. In contrast,
protein flexibility and rigidity are fully determined by the
structure of the protein and its environment. Therefore, to
analyze protein flexibility and rigidity, it is unnecessary to
resort to the protein interaction Hamiltonian whenever an
accurate protein structure is already available. As a result,
FRI bypasses the O(N3) matrix diagonalization. Our earlier
FRI29 has the computational complexity of O(N2) and our
fast FRI (fFRI)20 based on a cell lists algorithm1 is of O(N).
Anisotropic FRI (aFRI)20 and multiscale FRI (mFRI)21 have
also been proposed. FRI correlation kernels are utilized to
develop generalized GNM (gGNM) and generalized ANM
(gANM) methods as well as multiscale GNM (mGNM) and
multiscale ANM (mANM) methods,30 which significantly
improves their accuracy. In the past two years, we have
extensively validated FRI, fFRI, aFRI, and mFRI by a set of
364 proteins for accuracy, reliability, and efficiency. Our mFRI
is about 20% more accurate than GNM on the 364 protein test
set.21 Our fFRI is orders of magnitude faster than GNM on a
set of 44 proteins, including one of the largest proteins in the

0021-9606/2016/144(23)/234106/8/$30.00 144, 234106-1 Published by AIP Publishing.

http://dx.doi.org/10.1063/1.4953851
http://dx.doi.org/10.1063/1.4953851
http://dx.doi.org/10.1063/1.4953851
http://dx.doi.org/10.1063/1.4953851
http://dx.doi.org/10.1063/1.4953851
http://dx.doi.org/10.1063/1.4953851
http://dx.doi.org/10.1063/1.4953851
http://dx.doi.org/10.1063/1.4953851
http://dx.doi.org/10.1063/1.4953851
mailto:wei@math.msu.edu
mailto:wei@math.msu.edu
mailto:wei@math.msu.edu
mailto:wei@math.msu.edu
mailto:wei@math.msu.edu
mailto:wei@math.msu.edu
mailto:wei@math.msu.edu
mailto:wei@math.msu.edu
mailto:wei@math.msu.edu
mailto:wei@math.msu.edu
mailto:wei@math.msu.edu
mailto:wei@math.msu.edu
mailto:wei@math.msu.edu
mailto:wei@math.msu.edu
mailto:wei@math.msu.edu
mailto:wei@math.msu.edu
http://crossmark.crossref.org/dialog/?doi=10.1063/1.4953851&domain=pdf&date_stamp=2016-06-20


234106-2 Nguyen, Xia, and Wei J. Chem. Phys. 144, 234106 (2016)

Protein Data Bank (PDB), namely, an HIV virus capsid (1E6J)
having 313 236 residues. Moreover, to predict the B-factors of
the HIV capsid, it will take our fRI only 30 s to complete all
calculations, while it would take GNM more than 120 years to
accomplish the same job had the computer memory not been
a problem.20

Although various forms of FRI correlation kernels have
been introduced, the general mathematical structure of FRI
has not been studied. For example, only one rigidity formula
and one flexibility formula were proposed.20,29 It is interesting
to know whether there exists alternative FRI formulations.
If so, how do they perform against other existing methods
in experimental B-factor predictions? The objective of the
present work is to shed lights on these issues. Motivated by the
structure of the popular Gaussian surface,12,13,16,26 we propose
an alternative rigidity index and a new rigidity density. The
latter systematically extends the Gaussian surface to surface
densities equipped with a wide variety of FRI correlation
kernels. Additionally, we propose normalized rigidity index
and normalized rigidity density. The latter behaves like a
protein domain indicator,28 which inspires us to introduce
a new form of flexibility index and flexibility function.
These generalized FRI (gFRI) formulations are extensively
validated against experimental data and their performances
are systematically compared with a number of other methods.
In addition, the new form of flexibility index has been
incorporated into aFRI to predict the amplitudes and the
directions of atomic fluctuation.

In a molecule with N atoms, we denote r j ∈ R3 the
position of jth atom, and ∥ri − r j∥ the Euclidean distance
between ith and jth atoms. An atomic rigidity index is defined
as20,29

µ1
i =

N
j=1

w jΦ
�∥ri − r j∥; η j

�
, (1)

where w j are the particle-type related weights that can be
set to w j = 1 for the present work, η j are the characteristic
distances, and Φ is a correlation kernel that satisfies the
following admissibility conditions:

Φ
�∥ri − ri∥; η j∥� = 1, as ∥ri − r j∥ → 0, (2)

Φ
�∥ri − r j∥; η j∥� = 0, as ∥ri − r j∥ → ∞. (3)

Monotonically decaying radial basis functions are all
admissible. Commonly used FRI correlation kernels include
generalized exponential functions

Φ
�∥ri − r j∥; η j∥� = e−(∥ri−r j∥/η j)κ, κ > 0, (4)

and generalized Lorentz functions

Φ
�∥ri − r j∥; η j

�
=

1
1 +

�∥ri − r j∥/η j

�ν , ν > 0. (5)

Many other functions such as delta sequences of the positive
type discussed in an earlier work27 can be employed as well.

The rigidity index in Eq. (1) was extended into a
continuous rigidity density20,29

µ1(r) =
N
j=1

w jΦ
�∥r − r j∥; η j

�
. (6)

It has been shown that rigidity density (6) serves as an excellent
representation of molecular surfaces.33 This connection
motivates us to generalize the Gaussian surface12,13,16,26 to
a new class of surface densities equipped with a wide variety
of FRI correlation kernels (Φ

�∥r − r j∥; η j

�
)

µ2(r) = 1 −
n
j=1

r,r j

�
1 − w jΦ

�∥r − r j∥; η j

��
. (7)

Since both rigidity densities µα(r), α = 1,2 represent
molecular density at position r, it is convenient to normalize
these densities by their maximal values

µ̄α(r) = µα(r)
max
r∈R3

µα(r) , α = 1,2. (8)

In this form, the behaviors of two types of rigidity based
molecular surfaces can be easily compared. Additionally,
normalized rigidity densities in Eq. (8) can be used as solute
domain indicators in implicit solvent models.28 Obviously,
max µα(r) occurs at an atomic position. Therefore, we can
define normalized atomic rigidity indexes,

µ̄αi = µ̄α(ri), α = 1,2. (9)

With atomic rigidity indexes, µ̄αi , we denote the flexibility
indexes proposed in our earlier work20,29 as atomic flexibility
indexes of type I,20,29

f α1
i =

1
µ̄αi

, ∀i = 1,2, . . . ,N, α = 1,2. (10)

The definition of atomic flexibility indexes is not unique. One
of the present objectives is to explore other forms of atomic
flexibility indexes. Since the normalized atomic rigidity
density can be interpreted as a solute domain indicator, then
1 − µ̄α(r) can be regarded as a solvent domain indicator.7,28

This motivates us to propose a new form of atomic flexibility
indexes,

f α2
i = 1 − µ̄αi , ∀i = 1,2, . . . ,N, α = 1,2. (11)

We denote f α2
i as atomic flexibility indexes of type II.

In the rest of this paper, we focus on the exploration of
gFRI models associated f αβ

i , i.e., f 11
i , f 12

i , f 21
i , and f 22

i ,
and denote these models as gFRIαβ. We also study the
performance of gFRI for various kernel implementations,
namely, generalized exponential and generalized Lorentz
correlation kernels.

Due to the proportionality between the atomic flexibility
index and the temperature factor at each atom, the theoretical
B-factor at ith atom, Bαβ

i , can be expressed as a linear form,

Bαβ
i = aαβ f αβ

i + bαβ, ∀i = 1,2, . . . ,N,

α = 1,2, β = 1,2,
(12)

where constants aαβ and bαβ are independent of index i and
can be estimated by the following minimization process:

min
aαβ,bαβ




N
i=1

���B
αβ
i − Be

i
���
2

, (13)

where Be
i is the experimental B-factor for the ith atom. To

quantitatively assess the performance of the proposed gFRI
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TABLE I. Mean correlation coefficients (MCCs) for protein B-factor
predictions.

Method Exponential kernels MCC Lorentz kernels MCC

gFRI11 κ = 1.0, η = 3.0 Å 0.625 ν = 3.0,η = 3.0 Å 0.628
gFRI12 κ = 1.0, η = 4.0 Å 0.607 ν = 2.5,η = 1.0 Å 0.613
gFRI21 κ = 1.0, η = 3.0 Å 0.604 ν = 2.5,η = 1.0 Å 0.626
gFRI22 κ = 1.0, η = 3.0 Å 0.621 ν = 2.5,η = 2.0 Å 0.627
FRIa κ = 1.0, η = 3.0 Å 0.623 ν = 3.0,η = 3.0 Å 0.626
gGNMb κ = 1.0, η = 3.0 Å 0.608 ν = 3.0,η = 0.5 Å 0.622
gANMc κ = 2.0, η = 11.0 Å 0.518 Not available
GNMd Not applicable 0.565

aResults averaged over 365 proteins from Ref. 20.
bResults averaged over 362 proteins from Ref. 30.
cResults averaged over 300 proteins from Ref. 30.
dResults obtained with cutoff distance 7Å averaged over 365 proteins from Ref. 20.

models for the B-factor prediction, we consider correlation
coefficient (CC)

CC =

N
i=1

�
Be
i − B̂e

i

� (
Bαβ
i − B̂αβ

i

)
N

i=1

�
Be
i − B̂e

i

�2N
i=1

(
Bαβ
i − B̂αβ

i

)21/2 , (14)

where B̂αβ and B̂e are, respectively, the statistical averages of
theoretical and experimental B-factors.

We consider a set of 364 proteins used in our earlier
work30 and coarse-grained Cα atoms in each protein.
Therefore, we set w j = 1 and use a uniform characteristic
distance η j = η in all of our computations.

We first analyze the best parameter set for the B-factor
prediction of each rigidity and flexibility type over a range
of parameters. Table I reveals the optimal parameters and the
best MCCs for gFRIαβ, with α = 1,2 and β = 1,2. For the
sake of visualization, Fig. 1 plots behavior of parameters for
exponential and Lorentz kernels in B-factor predictions. It
can be seen from Fig. 1 that gFRI21 and gFRI22 models are
more sensitive to parameter η than their gFRI1β counterparts.
Despite having a fewer choices of fitting parameters, gFRI21

and gFRI22 models are still able to deliver B-factor predictions
as accurate as those of gFRI1β models.

To further demonstrate the accuracy of each type of
B-factor predictions for different correlations kernels, we plot
predicted B-factors against the experimental ones for protein
1DF4 in Fig. 2. In general, all B-factor prediction approaches
produce a similar accuracy, especially when a Lorentz kernel
is employed. Moreover, the utilization of exponential type
of functions for gFRI12 and gFRI21 B-factor prediction types
likely performs a little bit worse than the rest.

For an extended comparison, Table I also lists B-
factor prediction performances of our earlier FRI20 method,
generalized GNM (gGNM),30 generalized ANM (gANM),30

and the classic GNM3,4 approaches. The earlier FRI algorithm
is the same as gFRI11 in the present work while omits the
normalization process (8). By employing the same correlation
kernel parameters as of gFRI11, the earlier FRI method gives
B-factor predictions similar to those of gFRI11. Specifically,
MCCs produced by the previous FRI algorithm for exponential
kernel and Lorentz kernel, are, respectively, 0.623 and 0.626.
It is noted that the earlier FRI predicted B-factors over 365
proteins,20 while current methods employ the same data set
with one left out, 1AGN, due to the unrealistic experimental
B-factors.

The gGNM method30 is an FRI kernel generalization of
GNM.3,4 In this approach, the ith B-factor of a biomolecule
can be defined as3,4

BgGNM
i = agGNM

�
Γ
−1�

ii
, ∀i = 1,2, . . . ,N, (15)

where agGNM is a fitting parameter and
�
Γ−1�

ii
is the ith

diagonal element of the matrix inverse of the generalized
Kirchhoff matrix30

Γi j(Φ) =



−Φ
�∥ri − r j∥; η j

�
, i , j,

−
N

j, j,i
Γi j(Φ), i = j.

(16)

Similarly, the gANM method30 is an FRI kernel
generalization of the classic ANM method.2 In this approach,
the generalized local 3 × 3 Hessian matrix Hi j is written as

Hi j = −
Φ
�∥ri − r j∥; ηi j�
∥ri − r j∥2



(x j − xi)(x j − xi) (x j − xi)(y j − yi) (x j − xi)(z j − zi)
(y j − yi)(x j − xi) (y j − yi)(y j − yi) (y j − yi)(z j − zi)
(z j − zi)(x j − xi) (z j − zi)(y j − yi) (z j − zi)(z j − zi)



,∀i , j. (17)

We define the diagonal parts as Hii = −


i, j Hi j,∀i
= 1,2, . . . ,N . Therefore, the B-factor of ith Cα in a
biomolecule is expressed as

BgANM
i = agANMTr

�
H−1�

ii
, ∀i = 1,2, . . . ,N, (18)

where agANM is a fitting parameter and Tr(H−1)ii is the
summation of the ith three diagonal elements of the matrix
inversion of a matrix formed by generalized local Hessian
matrices.

As shown in Table I, the gGNM prediction with
exponential kernel offers the MCC of 0.60830 which is as
good as gFRI12 and gFRI21 methods and is a bit worse than
gFRI11 and gFRI22 approaches. We still find a similar behavior
when employing gGNM method with Lorentz kernels. In
particular, its MCC is 0.622. On the other hand, the gANM
scheme has the worst performance among the considering
prediction types. With an MCC found to be 0.518, the gANM
approach with exponential kernel is much far behind on the



234106-4 Nguyen, Xia, and Wei J. Chem. Phys. 144, 234106 (2016)

FIG. 1. Parameter testing of gFRI
methods for exponential (left chart) and
Lorentz (right chart) functions. Mean
correlation coefficients (MCCs) of B-
factor predictions of 364 proteins are
plotted against choice of η for a range
of values for κ or ν. Note that re-
sults with MCCs less than 0.45 are
not shown. (a) gFRI11. (b) gFRI12. (c)
gFRI21. (d) gFRI22.

accuracy. Since the gANM prediction with Lorentz type of
functions is nowhere close to the acceptable level in terms
of the accuracy, the result for that case was not reported.30

Finally, with a cutoff distance of 7 Å, the prediction of classic
GNM method delivers an MCC of 0.565, which is better than
that obtained by gANM, but not as good as any other methods
in comparison. Since GNM is one of the most popular and the

most accurate methods for B-factor predictions,34 the current
comparison shown in Table I indicates that FRI and gFRI are
a new generation of more accurate and robust methods for
protein B-factor prediction.

To further compare the B-factor performances between
different methods, we introduce two types of continuous
flexibility functions,
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FIG. 2. Experimental B-factors (gray)
vs predicted B-factors (red) of 1DF4
using the exponential (left) and Lorentz
(right) correlation kernels. The optimal
parameters for each type of B-factor
prediction are described in Table I.
(a) gFRI11. (b) gFRI12. (c) gFRI21. (d)
gFRI22.

Fα1(r) = aα1

µ̄α(r) + bα1 (19)

or

Fα2(r) = aα2 (1 − µ̄α(r)) + bα2, (20)

where aαβ and bαβ are determined by minimization (13).
These flexibility functions are volumetric and can be
projected onto a molecular surface for flexibility visualization.
As mentioned earlier, rigidity densities provide excellent
molecular surface representations and one can employ either
rigidity density µ̄1(r) or µ̄2(r) for surface generation. However,
for the purpose of surface visualization, rigidity density µ̄2(r)
is not suitable. The reason is that the rigidity formula (7) in
the continuous form has to avoid all the grid points near each

atomic center. Otherwise rigidity densities would be mostly 1
and the corresponding flexibility functions would be mostly
a constant on the molecular surface. This hindrance can be
remedied by using interpolation approach as discussed in our
previous work.29 In the present work, we only consider µ̄1(r)
for surface representation and employ F11(r) and F12(r) for
flexibility visualization. The parameters for F11(r) and F12(r)
follow those of gFRI11 and gFRI12 as shown in Eqs. (19) and
(20), respectively.

Figure 3 depicts the projection of flexibility functions
F1β(r) onto the isosurface of rigidity density µ̄1(r) = 0.05 of
protein 1DF4. Parameters κ = 1, w j = 1, and η j = 0.5 Å for
all j = 1, . . . ,N are used in µ̄1(r) for surface generation.
Even though both gFRI11 and gFRI12 deliver similar B-
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FIG. 3. Molecular surface of 1DF4 col-
ored by flexibility function with expo-
nential kernel. Left: gFRI11 with κ = 1.0
and η = 3.0 Å. Right: gFRI12 with
κ = 1.0 and η = 4.0 Å.

factor predictions, with MCCs being 0.888 for gFRI11 and
is 0.889 for gFRI12, their flexibility functions (F1β(r)) behave
differently. It can be seen from Fig. 3 that outer region of
F11(r) projection contains higher values than its counterpart
F12(r), while the inner region of both F1β(r) stays almost
the same for both methods. This behavior is likely due to the
fact that F11(r) is constructed by Eq. (19), which dramatically
amplifies small rigidity densities far away from the center of
mass of a molecule. In contrast, F12(r) is bound and well
defined everywhere.

To predict the amplitudes and directions of atomic
fluctuation, ANM2 is commonly used. Another tool for such
a purpose is the anisotropic FRI (aFRI) proposed in our
previous work.20 It is interesting to know whether the present
flexibility formulation (11) leads to a new algorithm for
protein anisotropic motion analysis. To this end, we present
a brief review of aFRI theory, which establishes notions for
new formulation. In ANM, the Hessian matrix is a global
matrix containing 3N × 3N elements with N being a number
of atoms. In our aFRI model, depending on one’s interest,
the size of the Hessian matrix can vary from 3 × 3 for a
completely local aFRI to 3N × 3N for a completely global
aFRI. To construct such a Hessian matrix, we partition all N
atoms in a molecule into a total of M clusters {c1,c2, . . . ,cM}.
Each cluster ck with k = 1, . . . ,M has Nk atoms so that
N =
M

k=1 Nk. For convenience, we denote

Φ
i j
uv =

∂

∂ui

∂

∂v j
Φ(∥ri − r j∥; η j),

u, v = x, y, z; i, j = 1,2, . . . ,N. (21)

Note that for each given i j, we define Φi j =
(
Φ

i j
uv

)
as a local

anisotropic matrix

Φ
i j =

*...
,

Φ
i j
xx Φ

i j
xy Φ

i j
xz

Φ
i j
yx Φ

i j
y y Φ

i j
yz

Φ
i j
z x Φ

i j
z y Φ

i j
zz

+///
-

. (22)

In the anisotropic flexibility approach, a flexibility
Hessian matrix F1(ck) for cluster ck is defined by

F1
i j(ck) = −

1
w j

(Φi j)−1, i, j ∈ ck; i , j; u, v = x, y, z,

(23)

F1
ii(ck) =

N

j=1

1
w j

(Φi j)−1, i ∈ ck; u, v = x, y, z, (24)

F1
i j(ck) = 0, i, j < ck; u, v = x, y, z, (25)

where (Φi j)−1 denotes the unscaled inverse of matrix Φi j such
that Φi j(Φi j)−1 = |Φi j |.

Motivated by the new form of atomic flexibility indexes
(11), we propose another presentation for the flexibility
Hessian matrix F2(ck) as follows:

F2
i j(ck) = −

1
w j

|Φi j |(J3 − Φi j), i, j ∈ ck; i , j; u, v = x, y, z,

(26)

F2
ii(ck) =

N

j=1

1
w j

|Φi j |(J3 − Φi j), i ∈ ck; u, v = x, y, z,

(27)

F2
i j(ck) = 0, i, j < ck; u, v = x, y, z, (28)

where J3 is a 3 × 3 matrix with every element being one.
We can achieve 3Nk eigenvectors for Nk atoms in cluster

ck by diagonalizing Fα(ck), α = 1,2. Note that the diagonal
part Fα

ii(ck), α = 1,2, has inherent information of all atoms
in the system. As a result, we can predict B-factors by
employing Eq. (13) for a set of flexibility indexes collected
from the diagonal parts

f AFα
i = Tr(Fα(ck))ii (29)

= (Fα(ck))iixx + (Fα(ck))iiy y + (Fα(ck))iizz ,
α = 1,2. (30)

In this work, we compare the protein anisotropic motion
predictions by using completely global aFRI models based
on the anisotropic flexibility associated with f AFα

i and denote
these models as aFRIα, α = 1,2. Note that model aFRI1

is already discussed in our previous work20 and used for a
comparison. Figure 4 depicts the first three nontrivial isotropic
modes of aFRI1, aFRI2, and ANM for protein PBID: 2XHF.
The Lorentz kernel is used for both aFRI algorithms with
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FIG. 4. Comparison of modes for protein PDB ID:
2XHF. The top row is generated by using the completely
global aFRI1 with ν = 2 and η = 30 Å . The middle row
is generated by using the completely global aFRI2 with
ν = 2 and η = 25 Å . The bottom row is generated by
using ANM with Prody v1.85 using default settings. (a)
aFRI1. (b) aFRI2. (c) ANM.

w j = 1, ν = 2, and η j = 30 Å, ∀ j = 1, . . . ,N for aFRI1, and
w j = 1, ν = 2, and η j = 25 Å, ∀ j = 1, . . . ,N for aFRI2. To
obtain ANM prediction, we use Prody v1.85 with default
settings. It is interesting to see that each algorithm has its
own set of collective protein motions. Since there is no exact

answer to these fluctuation modes, we cannot conclude which
motion prediction is right or wrong.

It needs to point out that the proposed gFRI can be
readily incorporated into our fFRI and mFRI methodologies.
Additionally, infinitely many possible atomic flexibility
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indexes of a general functional form f (µ̄αi ) can be designed.
For example, one can choose f (µ̄αi ) = Φ

�
µ̄αi ; η0

�
with η0

being a constant. However, it is not obvious how to
design another distinct rigidity density formula. A systematic
analysis of these aspects is beyond the scope of the present
work.
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