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ABSTRACT: The coronavirus disease 2019 (COVID-19) pandemic
caused by severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) has infected over 7.1 million people and led to over 0.4 million
deaths. Currently, there is no specific anti-SARS-CoV-2 medication.
New drug discovery typically takes more than 10 years. Drug
repositioning becomes one of the most feasible approaches for
combating COVID-19. This work curates the largest available
experimental data set for SARS-CoV-2 or SARS-CoV 3CL (main)
protease inhibitors. On the basis of this data set, we develop validated
machine learning models with relatively low root-mean-square error to
screen 1553 FDA-approved drugs as well as another 7012 investiga-
tional or off-market drugs in DrugBank. We found that many existing
drugs might be potentially potent to SARS-CoV-2. The druggability of
many potent SARS-CoV-2 3CL protease inhibitors is analyzed. This work offers a foundation for further experimental studies of
COVID-19 drug repositioning.

Severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) appeared in Wuhan, China, in late December

2019 and has rapidly spread around the world. By June 11,
2020, over 7.1 million individuals were infected, and more than
408 000 fatalities had been reported. Currently, there is no
specific antiviral drug for this epidemic. It is worth noting that
recently, an experimental drug, Remdesivir, has been
recognized as a promising anti-SARS-CoV-2 drug. However,
the high experimental value of IC50 (11.41 μM)1 indicates that
it must be used in a large dose in treating COVID-19, which is
subject to side effects.
Considering the severity of this widespread dissemination

and health threats, panicked patients misled by media flocked
to pharmacies for Chinese medicine herbs, which were
reported to “inhibit” SARS-CoV-2, despite no clinical evidence
supporting the claim. Although there is also no evidence for
Chloroquine’s claimed curing effect, some desperate people
take it as “prophylactic” for COVID-19. Many researchers are
engaged in developing anti-SARS-CoV-2 drugs.2,3 However,
new drug discovery is a long, costly, and rigorous scientific
process. A more effective approach is to search for anti-SARS-
CoV-2 therapies from existing drug databases.
Drug repositioning (also known as drug repurposing), which

concerns the investigation of existing drugs for new therapeutic
target indications, has emerged as a successful strategy for drug
discovery because of the reduced costs and expedited approval
procedures.4−6 Several successful examples reveal its great
value in practice: Nelfinavir, initially developed to treat the
human immunodeficiency virus (HIV), is now being used for
cancer treatments. Amantadine was first designed to treat the

influenza caused by type A influenza viral infection and is being
used for the Parkinson’s disease.7 In recent years, the rapid
growth of drug-related data sets, as well as open data initiatives,
has led to new developments for computational drug
repositioning, particularly structural-based drug repositioning
(SBDR). Machine learning, network analysis, and text mining
and semantic inference are three major computational
approaches commonly applied in drug repositioning.8 The
rapid accumulation of genetic and structural databases
(https://www.rcsb.org/ and https://www.ncbi.nlm.nih.gov/
genbank/), the development of low-dimensional mathematical
representations of complex biomolecular structures,9 and the
availability of advanced deep learning algorithms have made
machine learning-based drug repositioning a promising
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approach.8 Because of the urgent need for anti-SARS-CoV-2
drugs, a computational drug repositioning is one of the most
feasible strategies for discovering SARS-CoV-2 drugs.
In SBDR, one needs to select one or a few effective targets.

Study shows that the SARS-CoV-2 genome is very close to that
of the severe acute respiratory syndrome (SARS)-CoV.10 The
sequence identities of SARS-CoV-2 3CL protease, RNA
polymerase, and the spike protein with corresponding SARS-
CoV proteins are 96.08%, 96%, and 76%, respectively11 (see
Figure S1). We, therefore, hypothesize that a potent SARS
3CL protease inhibitor is also a potent SARS-CoV-2 3CL
protease inhibitor. Unfortunately, there is no effective SARS
therapy at present. Nevertheless, the X-ray crystal structures of
both SARS and SARS-CoV-2 3CL proteases have been
reported.12,13 Additionally, the binding affinities of SARS-
CoV or SARS-CoV-2 3CL protease inhibitors from single-
protein experiments are available in various databases or the
original literature. Moreover, the DrugBank contains about
1600 drugs approved by the U.S. Food and Drug
Administration (FDA) as well as more than 7000 investiga-
tional or off-market drugs.14 The aforementioned information
provides a sound basis for developing an SBDR machine
learning model for SARS-CoV-2 3CL protease inhibition. It is
worth clarifying that SBDR machine learning models are
driven by data and do not explicitly form the energy terms
related to some biophysical characteristics such as electro-
statics and hydrogen bonding. Instead, these biophysical
interactions are implicitly encoded in the fingerprints, and
their impacts on the binding affinity are regulated by machine
learning scoring functions.
In responding to the pressing need for anti-SARS-CoV-2

medications, we have carefully collected 314 bonding affinities
for SARS-CoV or SARS-CoV-2 3CL protease inhibitors, which
is the largest set available to date for this system. Machine
learning models are built for these data points.
Unlike most earlier COVID-19 drug repositioning works

that did not provide a target-specific cross-validation test, we
have carefully optimized our machine learning model with a
10-fold cross-validation test on SARS-CoV-2 3CL protease
inhibitors. We achieve a Pearson correlation coefficient of 0.78
and a root-mean-square error (RMSE) of 0.79 kcal/mol on the
test sets of 10-fold cross validation tasks, which is much better
than that of similar machine learning models for standard
training sets in the PDBbind database (around 1.9 kcal/mol).15

We systematically evaluate the binding affinities (BAs) of 1553
FDA-approved drugs as well as 7012 investigational or off-
market drugs in the DrugBank by our 2D-fingerprint-based
machine learning model. In addition, a three-dimensional (3D)
pose predictor named MathPose16 is also applied to predict the
3D binding poses. With these models, we report the top 20
potential anti-SARS-CoV-2 3CL inhibitors from the FDA-
approved drugs and another top 20 from investigational or off-
market drugs. We also discuss the druggability of some potent
inhibitors in our training set. The information provides timely
guidance for the further development of anti-SARS-CoV-2
drugs.
With the SARS-CoV-2 3CL protease as the target, we

predict the binding affinities of 1553 FDA-approved drugs
using our machine learning predictor. Given these predicted
affinities, the top 20 potential SARS-CoV-2 inhibitors from the
FDA-approved drugs are shown in Table 1. We also supply the
corresponding IC50 (μM) derived from the binding affinity X
(kcal/mol) via the following conversion: IC50 = 10X/1.3633 ×

10−6. A complete list of the predicted values for 1553 FDA-
approved drugs is given in the Supporting Tables (FDA_ap-
proved) in Supporting Information.
We briefly describe the top 10 predicted potential anti-

SARS-CoV-2 drugs from the FDA-approved set. The most
potent one is Proflavine, an acriflavine derivative. It is a
disinfectant bacteriostatic against many Gram-positive bacteria.
Proflavine is toxic and carcinogenic in mammals and so it is
used only as a surface disinfectant or for treating superficial
wounds. Under the circumstance of the SARS-CoV-2, this drug
might be used to clean skin or SARS-CoV-2 contaminated
materials, offering an extra layer of protection. The second
drug is Chloroxine, also an antibacterial drug, which is used in
infectious diarrhea, disorders of the intestinal microflora,
giardiasis, and inflammatory bowel disease. It is notable that
this drug belongs to the same family with Chloroquine, which
was once considered for anti-SARS-CoV-2. However, accord-
ing to our prediction, Chloroquine is not effective for SARS-
CoV-2 3CL protease inhibition (BA: −6.92 kcal/mol). The
third one, Demexiptiline, a tricyclic antidepressant, acts
primarily as a norepinephrine reuptake inhibitor. The next
one, Fluorouracil, is a medication used to treat cancer. By
injection into a vein, it is used for colon cancer, esophageal
cancer, stomach cancer, pancreatic cancer, breast cancer, and
cervical cancer. The fifth drug, Oteracil, is an adjunct to
antineoplastic therapy, used to reduce the toxic side effects
associated with chemotherapy. The next one, Tilbroquinol, is a
medication used in the treatment of intestinal amoebiasis. The
seventh drug, Carvedilol, is a medication used to treat high
blood pressure, congestive heart failure, and left ventricular

Table 1. Summary of the Top 20 Potential Anti-SARS-CoV-
2 Drugs from 1553 FDA-Approved Drugs with Their
Predicted Binding Affinities (unit: kcal/mol), IC50 (μM),
and Corresponding Brand Names

DrugID name brand name

predicted
binding
affinity IC50

DB01123 Proflavine Bayer Pessaries,
Molca, Septicide

−8.37 0.72

DB01243 Chloroxine Capitrol −8.24 0.89
DB08998 Demexiptiline Deparon, Tinoran −8.14 1.06
DB00544 Fluorouracil Adrucil −8.11 1.11
DB03209 Oteracil Teysuno −8.09 1.16
DB13222 Tilbroquinol Intetrix −8.08 1.18
DB01136 Carvedilol Coreg −8.06 1.22
DB01033 Mercaptopurine Purinethol −8.04 1.26
DB08903 Bedaquiline Sirturo −8.02 1.29
DB00257 Clotrimazole Canesten −8.00 1.35
DB00878 Chlorhexidine Betasept, Biopatch −8.00 1.35
DB00666 Nafarelin Synarel −8.00 1.35
DB01213 Fomepizole Antizol −7.98 1.39
DB01656 Roflumilast Daxas, Daliresp −7.97 1.41
DB00676 Benzyl benzoate Ascabin, Ascabiol,

Ascarbin,
Tenutex

−7.96 1.45

DB06663 Pasireotide Signifor −7.95 1.47
DB08983 Etofibrate Lipo Merz Retard,

Liposec
−7.94 1.48

DB06791 Lanreotide Somatuline −7.94 1.48
DB00027 Gramicidin D Neosporin

Ophthalmic
−7.94 1.48

DB00730 Thiabendazole Mintezol,
Tresaderm, and
Arbotect

−7.93 1.51
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dysfunction. The number eight drug, Mercaptopurine, is a
medication used for cancer and autoimmune diseases.
Specifically, it treats acute lymphocytic leukemia, chronic
myeloid leukemia, Crohn’s disease, and ulcerative colitis. The
next one is Bedaquiline, which is a medication used to treat
active tuberculosis, specifically multidrug-resistant tuberculosis
along with other tuberculosis. The number ten drug,
Clotrimazole, is an antifungal medication, which is used to
treat vaginal yeast infections, oral thrush, diaper rash, pityriasis
versicolor, and types of ringworm including athlete’s foot and
jock itch.
Using our validated machine learning model, we present the

binding affinity prediction and ranking of 7012 investigational
or off-market drugs. We list the top 20 from the investigational
or off-market drugs in Table 2. A complete list of the predicted
values can be found in the Supporting Tables (Other_drugs)
in Supporting Information.

In comparison to FDA-approved drugs, investigational or
off-market drugs might be more promising SARS-CoV-2

inhibitors. Among them, Debio-1347 has a binding affinity of
−9.02 kcal/mol (IC50: 0.24 μM). Another top-ranking drug is
3-(1H-benzimidazol-2-yl)-1H-indazole, which has a binding
affinity of −9.01 kcal/mol (IC50: 0.24 μM). However, we note
that drug discovery is a complex and challenging issue. Having
a favorable binding affinity is a necessary but not sufficient
condition. Many FDA-approved drugs are selected for their
other characteristics, including toxicity, partition coefficient
(log P), solubility (log S), synthesizability, pharmacodynamics,
pharmacokinetics, etc. These are the issues that prevent many
investigational/experimental drugs from becoming FDA-
approved drugs. Many off-market drugs might have toxicity
and/or side-effect issues, in addition to the availability of better
alternatives.
The prediction of binding poses is another important task in

drug discovery. The goal pose prediction is to determine the
binding conformations of small-molecule ligands to the
appropriate target binding site. The availability of binding
poses enables researchers to understand the molecular
mechanism of protein−drug interactions and elucidate
fundamental biochemical processes. For example, protein−
ligand pose and binding affinity predictions are major tasks in
D3R Grand Challenges.16 Molecular docking is one of the
most frequently used methods for pose predictions. In this
work, utilizing MathPose developed in recent work,16 we
predict and analyze the binding poses of our predicted top 3
FDA-approved drugs and predicted top 3 investigational or off-
market drugs. More detail of the MathPose is given below. The
predicted poses are described in the next section.
The first-ranking candidate from the FDA-approved drugs is

Proflavine (see Figure 1a), with a predicted binding affinity to
the SARS-CoV-2 3CL protease of −8.37 kcal/mol. The
predicted binding pose using our MathPose16 is illustrated in
Figure 1b. It reveals that there are two hydrogen bonds formed
between the drug and the SARS-CoV-2 3CL protease. The first
one is between one amino of Proflavine and the O atom in the
main chain of the residue Glu166 of the protease. The second
one is between the other amino of the drug and the five-
member ring in the side chain of the residue His41 of the
protease. As a result, the binding affinity is promising.
The predicted second-best drug is Chloroxine (see Figure

1c). Its predicted binding affinity is −8.24 kcal/mol. Between
the drug and the protease, there are two hydrogen bonds (see
Figure 1d): One is formed by the H atom of the hydroxy of the
drug with the main-chain O atom of the residue Leu141. The
other one is between the hydroxy O atom of the drug and the
amino in the main chain of Cys145.
The third one, Demexiptiline (see Figure 1e), has a

predicted binding affinity of −8.14 kcal/mol. The hydrogen
bonds between this drug and the protease are formed by the H
atom of the amino on the tail of the drug with the side-chain O
atom of Ser144. Hydrophobic interactions also play a critical
role in the binding.
It is interesting to analyze the binding affinities of the

existing drugs developed as protease inhibitors. Table 3 shows
their predicted binding affinities. The predicted values by a
recent study17 are given in parentheses, and it appears that
these values are overestimated. Notably, the current protease
inhibitors do not have a substantial effect on the SARS-CoV-2
3CL protease. A possible reason is that SARS-CoV-2 3CL
protease is genetically and structurally different from most
other known proteases.

Table 2. Summary of Top 20 Potential Anti-SARS-CoV-2
Drugs from 7012 Investigational or Off-Market Drugs with
Predicted Binding Affinities (BAs) (unit: kcal/mol), IC50
(μM), and Corresponding Trade Names

DrugID name
predicted

BA IC50

DB12903 Debio-1347 −9.02 0.24
DB07959 3-(1H-benzimidazol-2-yl)-1H-indazole −9.01 0.24
DB07301 9H-carbazole −8.96 0.27
DB07620 2-[(2,4-dichloro-5-methylphenyl)

sulfonyl]-1,3-dinitro-5-(trifluoromethyl)
benzene

−8.89 0.30

DB08036 6,7,12,13-tetrahydro-5H-indolo[2,3-a]
pyrrolo[3,4-c]carbazol-5-one

−8.89 0.30

DB08440 N-1,10-phenanthrolin-5-ylacetamide −8.83 0.33
DB01767 Hemi-Babim −8.80 0.35
DB06828 5-[2-(1H-pyrrol-1-yl)ethoxy]-1H-indole −8.73 0.39
DB14914 Flortaucipir F-18 −8.69 0.42
DB15033 Flortaucipir −8.69 0.42
DB13534 Gedocarnil −8.67 0.44
DB02365 1,10-Phenanthroline −8.64 0.45
DB09473 Indium In-111 oxyquinoline −8.64 0.45
DB08512 6-amino-2-[(1-naphthylmethyl)amino]-

3,7-dihydro-8H-imidazo[4,5-g]
quinazolin-8-one

−8.60 0.48

DB01876 Bis(5-Amidino-2-Benzimidazolyl)
Methanone

−8.60 0.49

DB07919 7-methoxy-1-methyl-9H-β-carboline −8.59 0.49
DB02089 CP-526423 −8.59 0.50
DB07837 [4-(5-naphthalen-2-yl-1H-pyrrolo[2,3-b]

pyridin-3-yl)phenyl]acetic acid
−8.53 0.55

DB08073 (2S)-1-(1H-indol-3-yl)-3-{[5-(3-methyl-
1H-indazol-5-yl)pyridin-3-yl]oxy}
propan-2-amine

−8.53 0.55

DB08267 6-amino-4-(2-phenylethyl)-1,7-dihydro-
8H-imidazo[4,5-g]quinazolin-8-one

−8.52 0.56

In comparison to FDA-approved
drugs, investigational or off-mar-
ket drugs might be more prom-
ising SARS-CoV-2 inhibitors.
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In this section, we are interested in comparing our predicted
binding affinities to the corresponding experimental ones of
some existing drugs outside our training set. Table 4 lists our
predictions along with the experimental values of these drugs.
These experimental data are extracted from the recent
literature.1,18,19 The RMSE of experimental values and
predicted ones is 0.87 kcal/mol, showing a good agreement.
It is worth noting that all these data were obtained from cell-
culture experiments, leading to discrepancies when comparing
these experimental values to our results only tailoring to the
inhibition of the SARS-CoV-2 3CL protease. For example, the
target of Remdesivir is the RNA-dependent RNA polymerase
rather than the 3CL protease.
Among the investigational or off-market drugs, the top-

ranking candidate is Debio-1347 (see Figure 2a). Its binding
affinity with the SARS-CoV-2 3CL protease is predicted to be

−9.02 kcal/mol. The MathPose-predicted pose is illustrated in
Figure 2b. It indicates a hydrogen bond network formed
between the drug and the protease leads to the moderately
high binding affinity. This network consists of two hydrogen
bonds: the first hydrogen bond is between one N atom in the
Pyrazole of the drug and the main-chain amino of the residue
Glu166 of the protease; the second one is between one N atom
in the 1H-1,3-benzodiazole of the drug and the main-chain
amino of the residue Gly143 of the protease.
The second-best investigational drug is 3-(1H-benzimidazol-

2-yl)-1H-indazole (Figure 2c) with a predicted binding affinity
of −9.01 kcal/mol. Figure 2d reveals that the drug forms two
hydrogen bonds with the protease. One is between one N
atom in the 1H-1,3-benzodiazole of the drug and the main-
chain O atom of the residue Glu166 of the protease. The other

Figure 1. Proflavine, Chloroxine, Demexiptiline, and their complexes with SARS-CoV-2 3CL protease.
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is between one N atom in the 1H-indazole of the drug and the
main-chain O atom of the residue His164 of the protease.
The third one, 9H-carbazole (see Figure 2e), also has a

promising predicted affinity of −8.96 kcal/mol. As one can see
from Figure 2f, a strong hydrogen bond is formed between the
N atom of the drug and the main-chain O atom of the residue
His164 of the protease. The hydrophobic interactions play an
essential role in the binding as well.
Note that in our training set collected from the existing

experimental data, 21 samples have binding affinity values
lower than −9 kcal/mol. Table 5 provides a list of the top 20
SARS-CoV/SARS-CoV-2 3CL-protease inhibitors with their
experimental binding affinities and estimated druggable

properties. Moreover, 4 of these 21 samples have 3D
experimental structures available. Although these inhibitors
are not on the market yet, they serve as good starting points for
the design of anti-SARS-CoV-2 drugs. A full list of our training
compounds is given in the Supporting Tables (Training set) in
Supporting Information.
Among the SARS-CoV/SARS-CoV-2 3CL-protease com-

plexes with their 3D experimental structures available, the one
with the PDB ID 2zu420 is the most potent one with a binding
affinity over −10 kcal/mol. This high binding affinity is due to
a strong hydrogen bond network between the inhibitor and the
protease, which consists of as many as 7 hydrogen bonds.
These 7 hydrogen bonds are formed by the inhibitor with

Table 3. Summary of the Predicted Binding Affinities (BAs) (unit: kcal/mol) and IC50 (μM) of the Existing Protease
Inhibitorsa

DrugID predicted binding affinity IC50 DrugID predicted BA IC50

Remikiren −7.42 3.57 Moexipril −6.55 15.63
Candoxatril −7.22 5.05 Trandolapril −6.54 17.70
Darunavir −7.16 5.55 Lopinavir −6.50 16.92
Isofluorophate −7.09 6.28 Spirapril −6.49 17.16
Atazanavir −7.03 (−9.57) 6.96 Dabigatran etexilate −6.46 17.96
Argatroban −7.02 6.98 Apixaban −6.44 18.84
Sitagliptin −6.93 8.22 Tipranavir −6.39 20.36
Fosamprenavir −6.92 8.26 Lisinopril −6.35 21.87
Quinapril −6.91 8.45 Perindopril −6.34 22.10
Amprenavir −6.82 9.83 Cilazapril −6.31 23.36
Benazepril −6.81 10.05 Ritonavir −6.26 (−8.47) 25.50
Rivaroxaban −6.74 11.21 Ximelagatran −6.24 26.14
Fosinopril −6.74 11.28 Vildagliptin −6.15 30.38
Telaprevir −6.73 11.54 Cilastatin −6.15 30.40
Captopril −6.72 11.68 Indinavir −6.11 32.91
Ramipril −6.66 12.84 Saxagliptin −6.07 35.27
Enalapril −6.66 12.93 Nelfinavir −6.05 36.23
Alogliptin −6.62 13.90 Boceprevir −6.00 39.16
Linagliptin −6.58 14.73 Simeprevir −5.77 (−8.29) 58.25
Saquinavir −6.56 15.26 Ecabet −5.71 64.15

aNumbers in parentheses are predictions from the literature.17

Table 4. Summary of our Predicted Binding Affinities (BAs) and the Corresponding Experimental Values of Some Existing
Drugs against SARS-CoV-2a

DrugID experiment prediction DrugID experiment prediction

Remdesivir −6.741 −6.29 Perhexiline −7.081 −6.67
Chloroquine −7.001 −6.92 Loperamide −6.861 −6.98
Lopinavir −6.871 −6.51 Mefloquine −7.311 −6.89
Niclosamide −8.931 −7.66 Amodiaquine −7.211 −6.93
Proscillaridin −7.751 −6.50 Phenazopyridine −6.211 −7.51
Penfluridol −7.231 −6.54 Clomiphene −7.191 −7.12
Toremifene −7.421 −7.20 Digoxin −9.161 −7.00
Hexachlorophene −8.241 −7.37 Thioridazine −7.051 −6.96
Salinomycin −9.021 −7.00 Pyronaridine −6.131 −6.68
Ciclesonide −7.311 −7.04 Ceritinib −7.561 −6.77
Osimertinib −7.481 −6.62 Lusutrombopag −7.391 −6.78
Gilteritinib −7.051 −5.57 Berbamine −6.961 −6.87
Ivacaftor −7.071 −6.74 Mequitazine −7.001 −6.41
Dronedarone −7.371 −6.19 Eltrombopag −6.931 −6.17
Fluphenazine −7.0818 −6.29 Benztropine −6.6318 −6.94
Chlorpromazine −7.5018 −7.00 Terconazole −6.7118 −7.18
Simeprevir −6.6719 −5.77 Boceprevir −7.3419 −6.00
Narlaprevir −7.1419 −6.38

aAll numbers are in kcal/mol.
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protease residues Gln189, Gly143, His163, His164, and
Glu166 of the protease.
The second-best 3D-experimental structure is the one with

the PDB ID 3avz,21 and its binding affinity is −9.80 kcal/mol.
A hydrogen bond network, including 7 bonds, plays an
essential role in this strong binding. This network is between
the inhibitor and protease residues Gln192, Thr190, His164,
His163, Glu166, and Gly143.
The PDB ID of the third one is 2zu520 with a binding

affinity of −9.56 kcal/mol. A strong hydrogen bond network
with 7 bonds can also be found in the structure. The protease
residues in the network are Glu166, Phe148, His163, His164,
Gly143, and Gln189.
Because His163, His164, and Glu166 emerge in the

hydrogen bond networks of all three structures, it suggests
that these three residues are critical to inhibitor binding.
The partition coefficient (log P), aqueous solubility (log S),

and synthesizability are also critical medical chemical proper-
ties for deciding whether a compound can be a drug or not.

Notably, synthesizability is always in terms of synthetic
accessibility score (SAS), for which 1 indicates the easiest,
10 indicates the hardest. Here, we first calculate the log P’s, log
S’s, and SASs of the 1553 FDA-approved drugs (see the
Supporting Tables (FDA_approved) in Supporting Informa-
tion); we then investigate whether the three properties of the
inhibitors in the top three 3D experimental structures (Figure
3) are in the preferred ranges of the FDA-approved drugs.
According to the log P distribution of the FDA-approved

drugs in the Supporting Tables (FDA_approved) in
Supporting Information, the log P interval with a large
population of the FDA-approved drugs is between −0.14
and 4.96. The log P values of the top 3 inhibitors are 2.35,
−1.35, and −0.46, respectively.
The log S distribution reveals that the preferred range of log

S is between −5.12 and 1.76. The log S values of the top 3
inhibitors are −3.53, −2.33, and −4.39.

Figure 2. Debio-1347, 3-(1H-benzimidazol-2-yl)-1H-indazole, 9H-carbazole, and their complexes with SARS-CoV-2 3CL protease.
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In the SAS distribution, most of the FDA-approved drugs
have SASs between 1.84 and 3.94. The SAS values of the top 3
inhibitors are 4.04, 4.65, and 4.27.
In summary, for the inhibitor in the first ranking PDB

structure 2zu4, its log P and log S are quite good for a drug.
The SAS is a little higher, but it is still not too difficult to
synthesize: 344 of the 1553 FDA-approved drugs have larger
SASs than this inhibitor, and 56 of them even have SASs over
6.
Similarly, for the 3avz and 2zu5 inhibitors, their log S’s are

very promising. Some of the log P’s and SASs are out of the
preferred ranges, but many FDA-approved drugs still have
worse log Ps and SASs. As a result, these top 3 inhibitors,
especially the first one, could be good starting points for
developing anti-SARS-CoV2 drugs. Obviously, their toxicity
will be a major concern for any further development.
We collect the training set from single-protein experimental

data of SARS/SARS-CoV-2 3CL protease in public databases
or the related literature.
ChEMBL is a manually curated database of bioactive

molecules.22 Currently, ChEMBL contains more than 2 million
compounds only in the SMILES string format. In ChEMBL,
we find 277 SARS-CoV or SARS-CoV-2 3CL protease
inhibitors with reported Kd/IC50 from single-protein experi-
ments.
Another database is PDBbind. The PDBbind database

includes all the protein−ligand complexes with the crystal
structures deposited in the Protein Data Bank (PDB) and their
binding affinities in the form of Kd, Ki, or IC50 reported in the
literature.23 The newest PDBbind v2019 consists of 17 679
complexes as well as the binding affinities. We find another 30
inhibitors in the PDBbind v2019.
Additionally, binding affinities for four other SARS-CoV

3CL protease inhibitors and three other SARS-CoV-2 3CL
protease inhibitors are extracted from refs 24 and 13,
respectively. Therefore, we collected 314 SARS-CoV/SARS-
CoV-2 3CL protease inhibitors with available experimental
binding affinities.

The binding affinity range in this set is from −3.68 kcal/mol
to −11.08 kcal/mol. The distribution is depicted in Figure S3.
The top 20 inhibitors in the training set are summarized in
Table 5.
DrugBank (www.drugbank.ca)14 is a richly annotated, freely

accessible online database that integrates massive drug, drug
target, drug action, and drug interaction information about
FDA-approved drugs as well as investigational or off-market
drugs. Because of the high quality and sufficient information
contained in it, the DrugBank has become one of the most
popular reference drug resources used all over the world. In the
current work, we extract 1553 FDA-approved drugs and 7012
investigational or off-market drugs from DrugBank and
evaluate their binding affinities to the SARS-CoV-2 3CL
protease.
In this work, the log P and synthesizability values are

calculated by RDKit (http://www.rdkit.org); the synthesiz-
ability in RDkit is reported in terms of synthetic accessibility
score (1 means the easiest, and 10 means the hardest). The log
S values are obtained via Alog PS 2.1.25

The 3D binding poses in this work are predicted by the
MathPose, a 3D pose predictor which converts SMILES strings
into 3D poses with references of target molecules. It was the
top performer in D3R Grand Challenge 4 in predicting the
poses of 24 beta-secretase 1 (BACE) binders.16 For one
SMILES string, around 1000 3D structures can be generated
by a common docking software tool, i.e., GLIDE. Moreover, a
selected set of known complexes is redocked by the three
docking software packages mentioned above to generate 100
decoy complexes per input ligand as a machine learning
training set. All of those structures are optimized by a
minimization component in GLIDE with the OPLS3 force
field.26 The machine learning labels will be the calculated root
mean squared deviations (RMSDs) between the decoy and
native structures for this training set. Furthermore, MathDL
models16 are set up and applied to select the top-ranked pose
for the given ligand.

Table 5. Summary of Top 20 SARS-CoV-2 3CL Protease Inhibitors in the Training Set with Experimental Binding Affinities
(unit: kcal/mol), IC50 (μM), as Well as Calculated Synthesizability, log P, and log S

ID binding affinity IC50 synthesizability log P log S

CHEMBL497141 −11.08 0.01 2.4 2.18 −3.65
PDB ID 2zu4 −10.12 0.04 4.04 2.35 −3.53
CHEMBL222234 −9.95 0.05 2.26 2.66 −3.59
CHEMBL2442057 −9.94 0.05 2.26 5.39 −6.22
CHEMBL213054 −9.92 0.05 4.2 3.15 −3.81
CHEMBL212080 −9.87 0.06 4.25 3.15 −3.76
CHEMBL222840 −9.85 0.06 2.23 2.55 −3.37
CHEMBL398437 −9.85 0.06 2.29 4.12 −5.39
CHEMBL222769 −9.82 0.06 2.16 4.87 −5.73
PDB ID 3avz −9.80 0.07 4.65 −1.35 −2.33
CHEMBL225515 −9.80 0.07 2.22 3.44 −4.28
CHEMBL1929019 −9.80 0.07 4.23 −0.77 −2.41
CHEMBL222893 −9.57 0.10 2.21 4.17 −5.01
PDB ID 2zu5 −9.56 0.10 4.27 3.79 −4.39
PDB ID 3atw −9.55 0.10 4.63 −0.46 −2.47
CHEMBL334399 −9.50 0.11 2.20 3.06 −4.17
CHEMBL253905 −9.43 0.12 2.43 4.78 −5.45
CHEMBL403932 −9.42 0.12 1.94 4.11 −4.97
CHEMBL254103 −9.25 0.16 2.10 2.35 −3.34
CHEMBL426898 −9.23 0.17 2.17 3.70 −4.72
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In the current work, we develop a machine learning model
for predicting the binding affinities of SARS-CoV-2 inhibitors.
Our current model is classified as a ligand-based approach, the
most popular framework in computer-aided drug design owing
to its simplicity in data preparation while still delivering
satisfactory performance.27−30 Because the size of the training
set in our current case study is only 314, we apply the gradient-
boosting decision tree (GBDT) model because of its accuracy
for handling small data sets. This GBDT predictor is
constructed using the gradient boosting regressor module in
scikit-learn (version 0.20.1).
The 2D fingerprints of compounds are used as the input

features to our GBDT predictor. Previous study shows that the
consensus of ECFP4, Estate1, and Estate2 fingerprints
performs the best on binding-affinity prediction tasks.31 In
this work, we also make use of this consensus. The 2D
fingerprints are calculated from SMILES strings using RDKit
software (version 2018.09.3) (http://www.rdkit.org).

We validate the performance of our machine learning
predictor for the 314 inhibitors in the SARS-CoV-2 BA
training set. We use 10-fold cross-validation, which is carried
out using 50 random splittings. In Table S1 we show that our
machine learning predictor is trained with the average Pearson
correlation coefficient (Rp) of 0.997, the Kendall’s τ (τ) of
0.972, and RMSE of 0.095 kcal/mol. These metrics are based
on the averaged values across 10 folds, and these results
indicate our model is well-trained. Their averaged test
performances across the 10 folds of the whole SARS-CoV-2
BA set are found to be Rp = 0.777, τ = 0.586, and RMSE =
0.792 kcal/mol. These results endorse the reliability of our
model in the binding affinity prediction of SARS-CoV-2
inhibitors.
The current pneumonia outbreak caused by severe acute

respiratory syndrome coronavirus 2 (SARS-CoV-2) has
evolved into a global pandemic. Although currently there is
no effective antiviral medicine against SARS-CoV-2, the 3CL

Figure 3. Inhibitors and complexes from the top three PDBbind structures, 2zu4, 3avz, and 2zu5.
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proteases of SARS-CoV-2 and SARS-CoV have a sequence
identity of 96.1% and the binding-site RMSD of 0.42 Å, which
provide a solid basis for us to hypothesize that all potential
anti-SARS-CoV chemotherapies are also effective anti-SARS-
CoV-2 molecules. In this work, we curate 314 SARS-CoV-2/
SARS-CoV 3CL protease inhibitors with available experimen-
tal binding data from various sources to form a machine
learning training set. Using this training set, we develop
gradient-boosted decision trees (GBDT) model to predict the
binding affinities of potential SARS-CoV-2 3CL protease
inhibitors. The 10-fold cross-validation shows our model has a
Pearson correlation coefficient of 0.78 and a relatively low
root-mean-square error of 0.80 kcal/mol. A total of 8565 drugs
from DrugBank are evaluated by their predicted binding
affinities. We highlight 20 FDA-approved drugs as well as 20
investigational or off-market drugs as potentially potent
medications against SARS-CoV-2. We also analyze the
druggability of some potent inhibitors in our training set.
This work serves as a foundation for further experimental
development of anti-SARS-CoV-2 drugs.
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