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Structure of GNN for PL Binding

Learning tasks often require dealing with graph data which

contains rich information among graph nodes. Graph Neural / \
Network (GNN) has become one of the most popular models C /y

for learning from graph inputs in various fields such as | @ —W X xXF4&~— %%/
physics, chemistry, biology and linguistics. Our work focused

on protein-ligand binding affinity prediction by using \ C-C > /

flexibility-rigidity index (FRI) of protein-ligand complexes as
graph inputs and training GNN hyper-parameters
automatically. We employ datasets CASF-2007 to validate the \%

Pearson correlation, robustness and reliability of our GNN / \
model. a I a N\
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Consider a biomolecule having N atoms with coordinates \\ -/ \_ //
given as {r;|r; € R%,i = 1,2, ..., N}. Then commonly used FRI

correlation functions include the generalized exponential
functions will be

CDE’T(Hrl- — ]H) — e_(”ri_rju/nij) K >0 / \
and the generalized Lorentz functions a N\ - ™
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where n;; = T(1; + 17) and r; to be the van der Walls radius \ /
of ith atom.
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Figurel. FRI correlation functions, which behave like the NS
ideal low filter (ILF) at large k or v values
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* We define element—specific protein-ligand rigidity index
by collecting cross correlations Performance
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Rlgrc(X = Y) = z Z Cp (T = 12D, * By choosing 3 exponential kernels with 1 X 36 different 1
KEXEP LEYEL

with ||r, — 1]l < c. Here, « = E,L is kernel index, cis
cutoff distance to reduce computational complexity. X
denotes heavy atoms {C,N,0,S} in the protein and Y
denotes heavy atoms {C,N, O, S,P,F,Cl, Br,1} in the ligand.

in (2.5,15) as initial parameters, we can search the best 7
by neural network automatically. After 2000 epochs, the
Pearson correlation coefficient on CASF-2007 is 0.781.

e We run our code on GPU and running time is about 6

* This representation allows the multiresolution analysis of hours.
protein-ligand binding interactions by varying hyper-
parameter 7.
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Why do we consider GNN? = o
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* Although ANN can be implement to predict the binding B +,a°°ﬁt,}£:’°1
affinity for protein-ligand binding problems|[1], it’s time = {@.:_.5-‘"‘“
consuming to search all possible hyper-parameter 7. H;g?--"“‘a q,..,?""
* We will consider to use FRI of protein-ligand complexes as .;;_;’F;k P 2
graph inputs and treat hyper-parameters T as the a*-?:? o o @' ..f:.'
)
parameter in GNN to search the best T automatically. @ ® ¥ b ©
Figure2. Performance comparison between different
Reference methods on the PDBBind v2007 core set. The performance
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